АННОТАЦИЯ
Вакуумный магнито-левитационный транспорт (ВМЛТ) [1]. разрабатывается для того, чтобы соединить самые отдалённые участки нашей страны и обеспечить связность её территории при помощи более совершенной и высокоскоростной наземной транспортной инфраструктуры ., обладающей остро необходимой сейчас [2].
Согласно транспортной теореме: чем больше страна, тем больше должна быть скорость коммуникации внутри государств. Поэтому для сохранения целостности нашей огромной страны нам жизненно необходимо иметь такой высокоскоростной транспорт, а на данный момент ни самолёты, ни поезда не решают данную задачу полноценно и экономично. ВМЛТ позволяет перевозить грузы с рабочей скоростью до 6500 км / ч и более, имеет рекордно низкое энергопотребление и относительно дешевую инфраструктуру . Примечательной особенностью ВМЛТ является то, что почти все его элементы уже реализованы на практике, идёт работа по оптимизации технических решений и масштабированию данных систем для создания полупромышленных образцов. В данной работе мы рассматриваем некоторые теоретические и экспериментальные результаты, полученные авторами по приближению ВМЛТ к практической реализации.
ПРИНЦИП ДЕЙСТВИЯ
Удержание над поверхностью земли и перемещения транспортного средства осуществляется с помощью эффекта, который был предложен отечественным учёным Борисом Петровичем Вайнбергом ещё в 1914 году. Суть его в полезном объединении одновременно и магнитной левитации и вакуумной среды. Впоследствии данный эффект был дополнен эффектом квантовой левитации на базе взаимодействия постоянных и сверхпроводниковых магнитов.
Наша основная магистральная транспортная система будет представлять из себя высокоскоростную левитирующую над магнитной трассой капсулу, которая будет перемещаться по трубе с вакуумом, что позволит избавиться и от аэродинамического сопротивления и сопротивления за счет трения. Поэтому мы можем разгонять наш транспорт, способствуя повышению связности территории Страны до огромных скоростей, а точнее вплоть до 6500 км/ч.
При наличии правильных технологических подходов, это позволяет ещё и использовать практически полную (вплоть до 99% и более, при применении обратимых линейных
сверхпроводниковых электрических двигателей-генераторов) рекуперацию энергии, затраченной на разгон в начальном участке пути и дальнейшее перемещение, при обратном возвращении её в сеть в процессе торможения на конечном участке пути, что позволяет сделать, в перспективе, эту технологию самой высокоскоростной и энергетически эффективной.
В России, как и в ряде других стран, осуществляется лабораторная отработка базовых принципов как атмосферного, АМЛТ, так и вакуумного, ВМЛТ [1,3,5-9]. На базе разработанных коллегами из МАИ [10,11] методик расчёта и необходимых обосновывающих расчётно- теоретических работ первого этапа развития ВМЛТ- «атмосферного» магнито-левитационного транспорта – АМЛТ, – нами созданы реальные масштабируемые образцы различных действующих «потешных » малоразмерных макетов, на основе высокотемпературных сверхпроводников (ВТСП). На основе аналогичных расчётов, для ВМЛТ были разработаны, созданы и успешно испытаны различные действующие и масштабируемые демонстрационные макеты эффективных магнитолевитационных трасс ВМЛТ на базе постоянных высокоэнергетических магнитов NdFeB, созданы и также успешно испытаны различные перспективные варианты сопряжённых с ними «левитеров», – криостатов с блоками различных конфигураций ВТСП, поддерживающих длительное время необходимые температуры криостатирования в рабочем режиме и обеспечивающих их устойчивую левитацию во всех испытанных вариантах магнитолевитационных систем, а также варианты вакуумных оболочек макетов ВМЛТ [1,3,5-9]. В связи с недостаточным пока финансированием проекта нами реализован подход, в котором существует определённая матрица предварительно просчитанных финансовых вариантов реализации практически всех его масштабируемых составляющих, но их выбор и реализация проводится только тогда, когда сумма располагаемого финансирования удовлетворяет именно данному конкретному просчитанному варианту. Поэтому реализация исследовательской базы для подтверждения и изучения контролируемого рекуперативного и высокоскоростного движения с помощью наиболее эффективного сверхпроводникового линейного синхронного мотор-генератора, была вынужденно заменена пока на впервые предложенный нами в [3] дешёвый вариант наиболее, на наш взгляд энергетически эффективного рекуперативного, но низко и среднескоростного, так называемого Квантово-Гравитационного метода управления движением левитирующей капсулы (левитера) над трассами, созданными именно на базе разработанных коллегами из МАИ [10,11] методик расчёта. Также реализованы и варианты менее энергетически эффективного, но более дешёвого, резервного, аэродинамического метода управления движением с бортовыми автономными источниками энергии и электродвижения и бесконтактным дистанционным радиоуправлением.
На рис. 1 представлены характерный образец результата расчётов, проведенных по этой методике для реальной существующей трассы второго уровня с постоянными РЗМ магнитами 20х20х50мм3 на основе NdFeB и результаты расчёта следующей инновационной конфигурации схемы ВМЛТ, в которой при замене ранее рассмотренной трассы из постоянных РЗМ магнитов на основе NdFeB, на ВТСП рейс- трековые катушки или более сильные магниты с поверхностной индукцией В, порядка 1 Тл.
Рис. 1. Результаты расчёта конфигурации магнитного поля (в Тл по оси y и в мм по оси х) над рабочей поверхностью одного из макетов трассы ВМЛТ на основе NdFeB (внизу) и рейс-трековых катушек (вверху) ВТСП
Рис.2. Образец расчётов для реальной существующей трассы с постоянными РЗМ магнитами 20х20х50мм3 на основе NdFeB.
На данный момент мы уже создали несколько прототипов в нашей лаборатории, которые по масштабируемости уже достигли суммарной длины трассы около 30 м., а максимальная
грузоподъёмность около 200 кг. Мы испытывали наши прототипы на различных типах грузов, а также уже пробовали перевозить одного человека. Параллельно занимаемся
импортозамещением компонентов, мы стремимся к тому, чтобы все компоненты нашей
транспортной системы создавались в России, так, например в испытаниях мы сейчас внедряем российские ленточные сверхпроводники компании «СУПЕРОКС», которые себя достаточно хорошо показывает при испытаниях.
Рис.3. Некоторые макеты ВМЛТ.