Введение
На сегодняшний день в современных системах видеонаблюдения реализован функционал не только по записи видеопотока и вывода изображение на экран, но и по обеспечению различных аналитических функций. Как правило, такие функции заключаются в автоматизации анализа видеоинформации. Одной из наиболее востребованных функций является распознавание и идентификация лиц в зоне контроля. В таких системах в качестве физических параметров используются ключевые особенности человеческого лица, по которым его можно отличать от множества других.
Основная часть
Определим перечень задач, решаемых системами распознавания и идентификации лиц по видеофиксации в реальном времени:
1. Верификация. Система распознавания и идентификации лиц по видеофиксации в реальном времени может подтверждать личность человека путем сравнения предъявляемого образца с эталонным образцом, записанным в систему ранее. Фактически, выполняется сравнение по схеме «один к одному».
2. Идентификация на закрытом множестве. Система распознавания и идентификации лиц по видеофиксации в реальном времени сопоставляет полученное из видеопотока изображение с множеством записанных ранее шаблонов различных людей с целью установления личности, которой принадлежит этот образец. Данная задача может быть решена с учетом того, что персона, которой принадлежит образец, присутствует в базе. В этой задаче выполняется сравнение образцов по схеме «один ко многим». [1]
Определим область применения подобных систем в следующем перечне:
1. Распознавание лиц нарушителей и злоумышленников в общественных местах или на крупных мероприятиях. Системы распознавания и идентификации лиц по видеофиксации получают в режиме реального времени данные из систем видеонаблюдения различных хозяйствующих субъектов и камер, установленных в городе. На основании полученной информации проводится поиск нарушителей или преступников с целью последующей передачи данных правоохранительным органам.
Сегодня в России существуют крупные проекты, направленные на распознавание и идентификацию объектов по видеофиксации в режиме реального времени. С сентября 2017 года часть из 170 000 камер видеонаблюдения в Москве подключили к системе распознавания лиц. Существующая сеть объединяет подъездные видеокамеры, камеры на территории и в зданиях школ и детских садов, стадионах, остановках общественного транспорта и автовокзалах, в парках, подземных переходах и других общественных мест. Благодаря такому подходу появился дополнительный инструмент поиска преступников и нарушителей. [2]
Распознавание лиц людей по всему городу предоставляет уникальные возможности сотрудникам правоохранительных органов. Доступ к системе городского наблюдения получили около 16 тыс. сотрудников правоохранительных органов, государственных и муниципальных организаций. Система располагает разграничением уровня доступа для различных групп пользователей, что позволяет сохранить конфиденциальность действий жителей города.
2. Обеспечение контроля управления доступа. В этом случае видеонаблюдения интегрировано в систему безопасности и управляет контроллерами на турникетах.
Такая система может быть применена как в качестве основной (принимающей решение о пропуске субъекта на закрытую территорию), так и дублирующей. Неопознанные посетители не получат доступа на закрытую территорию, а их фото будет сохранено в базе с целью последующей обработки данного инцидента службой безопасности. [3]
Обычно такие системы устанавливаются на больших предприятиях, где от уровня безопасности зависит эффективность работы компании (например, разработка передовых технологий). Система автоматически распознает всех сотрудников и сравнивает с базой данных. В случае несоответствия или отсутствия человека в системе, система активизирует протоколы безопасности и оповестит сотрудников службы безопасности.
Преимуществом такого применения является минимизация человеческого участия в процессе, повышение трудовой дисциплины сотрудников и снижение издержек хозяйствующих субъектов на оплату труда.
3. Противодействие кражам в гипермаркетах и торговых центрах. Проблема систематических хищений стоит перед каждым крупным магазином с большими торговыми площадями. Дело в том, что существующие системы видеонаблюдения не эффективны в части предотвращения кражи и обычно используется только для получения доказательств уже совершенной кражи, когда ущерб уже нанесен. Системы распознавания и идентификации лиц по видеофиксации способны выявлять повторные потенциальные кражи в случаях, когда в базу данных будут введены данные по нарушителям и средства видеоаналитики выявят потенциального злоумышленника еще на входе в магазин.
4. Организация фейс-контроля в общественных заведениях. Использование системы распознавания лиц с выведением тревожной информации на удаленное устройство сотрудника службы безопасности поможет снизить или полностью пресечь нахождение в общественном заведении нежелательных лиц.
5. Организация продаж и целевой рекламы. На основе распознавания и идентификации лица человека, можно определить его пол, возраст и показать рекламу, которая будет потенциально интересна клиенту. Вместе с тем, на основе полученной информации можно списать денежные средства со счета клиента в случае его согласия на ту или иную покупку без участия человека.
Независимо от алгоритма обработки видеопотока программная функция распознавания и идентификации лиц работает по принципу сравнения отсканированного изображения с эталонами, имеющимися в базе. При этом сканирование происходит на ходу, посетителю достаточно повернуть лицо к сканеру во время движения.
По сути, системы распознавания являются компьютерными программами, которые анализируют изображения лиц людей в целях их идентификации. Программа берет изображение лица и измеряет такие его характеристики, как расстояние между глазами, длина носа, угол челюсти, на основе чего создается уникальный файл, который называется "шаблон". Используя шаблоны, программа сравнивает данное изображение с другими изображениями в базе, а затем оценивает, насколько изображения являются похожими друг на друга. Обычными источниками изображений для использования при идентификации по лицу являются сигналы от видеокамер или ранее полученные фотографии, наподобие тех, что хранятся в базе данных водительских удостоверений. [4]
Такой подход обуславливает наличие определенных требований к изображению, полученному из видеопотока. Хорошим показателем эффективности и быстродействия считается, если система способна идентифицировать человеческое лицо с расстояния не менее 10 метров от видеокамеры. При этом, распознавание должно успешно реализовываться даже при изменении определенных физических параметров: изменение прически, появление бороды, и т.д. Промежуток времени, в течение которого должно происходить распознавание и идентификация не должен превышать определенного значения, например подхода объекта видеоконтроля от входной двери турникетам. Еще одним требованием являются характеристики оборудования по видеонаблюдению. В зависимости от решаемых задач используется несколько типов ip камер, обладающих требуемыми характеристиками.
В связи с тем, что вышеописанные требования довольно серьезно влияют на процесс инедтификации и распознавания, процент ложного распознавания и идентификации довольно высок. Проблема такого высокого значения показателя ложного распознавания связан также с тем, что в отличие от отпечатков пальцев или радужной оболочки, наши лица меняются с течением времени. Системы распознавания легко ошибаются из-за изменения прически, растительности на лице или веса тела, из-за применения человеком каких-то простейших средств изменения внешности, а также из-за проявления последствий старения.
В качестве примера приведём исследование, проведенное Национальным институтом стандартов и технологий (NIST), по результатам которого было установило, что уровень ложной идентификации субъектов, чьи фотографии были сделаны всего 18 месяцев назад, равен 43%. При этом фотографии, использованные в исследовании, были отсняты в идеальных условиях, что весьма важно, так как программы распознавания по лицу очень плохо справляются с оценкой изменения освещенности или угла наклона камеры.
Изображение лица, записанное в шаблоне, подвержено воздействию ряда факторов, которые определяют ограничения и возможности систем инедтификации и распознавания лиц. В первую очередь, это условия освещения и различные окклюзии, например очки или маска,а также углы поворота, наклона и отклонения. На рисунке 1 представлены угловые положения головы, которые необходимо учитывать в процессе распознавания и идентификации лица.
Рисунок 1 - Угловые положения головы
Функционирование системы распознавания и идентификации лиц по видеофиксации в реальном времени начинается с разработки шаблонов людей. Как правило, шаблоны представляют собой двумерные изображения или кадры, распакованные из видеопотока. На рисунке 2 схематично представлен процесс регистрации нового шаблона в системе распознавания и идентификации лиц.
Рисунок 2 – Схематичное представление процесса регистрации нового шаблона в системе распознавания и идентификации лиц
В последнее время все чаще применяются трёхмерные модели, использующие триангуляцию при обработке двумерных изображений или трехмерные образцы, когда к RGB-массиву добавляется матрица глубины D, получаемая с помощью инфракрасного сенсора. Трёхмерные модели могут быть получены также за счет метода триангуляции, применяемого к фотоснимкам, полученным специальной техникой. [5]
Способ построения шаблона зависит от методов, применяемых в системе распознавания и идентификации лиц, формата исходных данных, или задач, решаемых системой. Наиболее общие этапы, которые описывают формирование шаблона для системы распознавания и идентификации лиц представлены на рисунке 3
Рисунок 3 – Процесс формирования шаблона на примере системы распознавания и идентификации лиц.
1. На этапе предобработки осуществляется детектирование лиц и трансформация выделенных областей к определенному виду: вращение (выравнивание), масштабирование, преобразование каналов и т.п.
2. Второй этап может включать в себя как поиск ключевых точек, так и представление пиксельной матрицы лица в пространстве признаков. Под признаками в данном случае понимаются произвольные дескрипторы изображения, полученные в результате обработки исходных данных.
3. На последнем этапе происходит кодирование и запись шаблона в базу моделей. Сформированная база шаблонов впоследствии используется как набор эталонов.
Представим схематичное изображение принципа идентификации и распознавания лиц на рисунке 4, в котором отражены следующие обозначения:
1. Передача системе изображения из видеопотока.
2. Идентификация образца среди имеющихся в базе шаблонов.
3. Верификация наиболее близкого образца из списка и предъявляемого на вход системы.
Рисунок 4 – Схематичное изображение принципа идентификации и распознавания лиц
Если процесс идентификации проходит успешно, система возвращает положительный результат, заключающийся в соответствии человека на изображении из видеопотока идентифицированному субъекту.
Таким образом, системы распознавания и идентификации лиц по видеофиксации в реальном времени имеют широкую область применения и функционируют в условии ряда ограничений, накладываемых на получаемые изображение. В рамках дальнейшего исследования проведем анализ существующих решений в области распознавания и идентификации лиц по видеофиксации в режиме реального времени.
Сегодня область применения систем распознавания и идентификации по видеофиксации затрагивает практически каждую сферу деятельности человека. Одним из ключевых направлений применения является охранная деятельность, а основными объектами распознавания являются лица людей и номерные знаки транспортных средств. Однако на сегодняшний день существуют тенденции роста востребованности более сложных функций — детектирование движения и оставленных предметов, отслеживание траекторий движения, многокамерный трекинг, классификация и идентификация объектов, распознавание ситуаций, анализ поведения людей и т. д.
В качестве критически важной области применения систем распознавания и идентификации по видеофиксации можно определить борьбу с терроризмом и криминалом. В случаях, когда изображения лиц преступников хранятся в базе данных, а в местах массового скопления людей (например, аэропорты, вокзалы, ТРЦ, спортивные учреждения) ведется съемка в режиме реального времени, использование подобных систем является эффективным методом выявления лиц, находящихся в розыске.
Таким образом, проблематика данного исследования заключается в существовании ряда нерешенных проблем в отношении устойчивости алгоритмов распознавания к воздействию внешних условий и вычислительных требований, наряду со стремительным развитием области применения систем распознавания и идентификации по видеофиксации в режиме реального времени. Необходимо разработать современный проект эффективной системы видеофиксации в части распознавания и идентификации лиц в режиме реального времени, способный оказывать качественную поддержку для успешного применения исследуемой технологии.
Исходя из актуальности и выявленной проблематики, можно сделать вывод о целесообразности разработки проекта эффективной системы видеофиксации в части распознавания и идентификации лиц в режиме реального времени.