Введение
Физическая величина - это одно из наиболее общих в физике и метрологии. Под физической величиной понимается свойство, общее в качественном отношении для многих физических объектов (физических систем, их состояний и происходящих в них процессов), но в количественном отношении индивидуальное для каждого объекта. Так, все тела обладают массой и температурой, но для каждого из них эти параметры различны. То же самое можно сказать и о других величинах – электрическом токе, вязкости жидкостей или потоке излучения [1].
Для того чтобы можно было установить различия в количественном содержании свойств в каждом объекте, отображаемых физической величиной, вводится понятие размера физической величины.
Исторически первой системой единиц физических величин была принятая в 1791 г. Национальным собранием Франции метрическая система мер. Она не являлась еще системой единиц в современном понимании, а включала в себя единицы длин, площадей, объемов, вместимостей и веса, в основу которых были положены две единицы: метр и килограмм.
В 1832 г. немецкий математик К. Гаусс предложил методику построения системы единиц как совокупности основных и производных. Он построил систему единиц, в которой за основу были приняты три произвольные, независимые друг от друга единицы – длины, массы и времени. Все остальные единицы можно было определить с помощью этих трех. Такую систему единиц, связанных определенным образом с тремя основными, Гаусс назвал абсолютной системой. За основные единицы он принял миллиметр, миллиграмм и секунду.
В дальнейшем с развитием науки и техники появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, базирующихся на метрической системе мер, но отличающихся друг от друга основными единицами.
Главнейшие системы единиц физических величин
Измерение - процесс нахождения значения физической величины опытным путем с помощью средств измерения. Существует различные виды измерений. Классификацию видов измерения проводят, исходя из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов [2].
Рассмотрим главнейшие системы единиц физических величин.
Система СГС.
Система единиц физических величин СГС, в которой основными единицами являются сантиметр как единица длины, грамм как единица массы и секунда как единица времени, была установлена в 1881 г.
Система МКГСС.
Применение килограмма как единицы веса, а в последующем как единицы силы вообще, привело в конце XIX века к формированию системы единиц физических величин с тремя основными единицами: метр – единица длины, килограмм-сила – единица силы и секунда – единица времени.
Система МКСА.
Основы этой системы были предложены в 1901 г. итальянским ученым Джорджи. Основными единицами системы МКСА являются метр, килограмм, секунда и ампер.
Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовало унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе.
Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений. При этом она должна была сохранить принцип когерентности (равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами).
В 1954 г. Х Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, кельвин и свеча) практической системы единиц. Система, основанная на утвержденных в 1954 г. шести основных единицах, была названа Международной системой единиц, сокращенно СИ (SI – начальные буквы французского наименования Systeme International). Был утвержден перечень шести основных, двух дополнительных и первый список двадцати семи производных единиц, а также приставки для образования кратных и дольных единиц [3].
Основные единицы СИ
Основные единицы СИ с указанием сокращенных обозначений русскими и латинскими буквами приведены в таблице 1.
Таблица 1
Величина |
Единица |
Сокращенное обозначение единицы |
|
русское |
международное |
||
Длина |
метр |
м |
m |
Масса |
килограмм |
кг |
kg |
Время |
секунда |
с |
s |
Сила эл. тока |
ампер |
А |
А |
Термодин. темп-ра |
кельвин |
К |
К |
Сила света |
кандела |
кд |
cd |
Кол-во вещества |
моль |
моль |
mol |
Определения основных единиц
Определения основных единиц, соответствующие решениям Генеральной конференции по мерам и весам, следующие.
Метр равен длине пути, проходимого светом в вакууме за 1/299792458 долю секунды.
Килограмм равен массе международного прототипа килограмма.
Секунда равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.
Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия, равнуюН.
Кельвин равен 1/273.16 части термодинамической температуры тройной точки воды.
Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0.012 кг.
Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотойГц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.
Международная система единиц включает в себя две дополнительные единицы – для измерения плоского и телесного углов.
Единица плоского угла – радиан (рад) – угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17’48".
Стерадиан (ср), принимаемый за единицу телесного угла, – телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.
Измеряют телесные углы путем определения плоских углов и проведения дополнительных расчетов по формуле
где Q – телесный угол;– плоский угол при вершине конуса, образованного внутри сферы данным телесным углом.
Телесному углу 1 ср соответствует плоский угол, равный 65°32′, углуср – плоский угол 120°, углуср – плоский угол 180° [4].
Дополнительные единицы СИ
Дополнительные единицы СИ использованы для образования единиц угловой скорости, углового ускорения и некоторых других величин. Сами по себе радиан и стерадиан применяются в основном для теоретических построений и расчетов, так как большинство важных для практически значений углов (полный угол, прямой угол и т.д.) в радианах выражаются трансцендентными числами (,и т.д.).
Производные единицы
Производные единицы Международной системы единиц образуются с помощью простейших уравнений между величинами, в которых числовые коэффициенты равны единице. Так, для линейной скорости в качестве определяющего уравнения можно воспользоваться выражением для скорости равномерного прямолинейного движения.
При длине пройденного пути (в метрах) и времени t, за которое пройден этот путь (в секундах), скорость выражается в метрах в секунду (м/с). Поэтому единица скорости СИ – метр в секунду – это скорость прямолинейно и равномерно движущейся точки, при которой она за время 1 с перемещается на расстояние 1 м.
Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице. Например, единица кинетической энергии СИ – килограмм-метр в квадрате на секунду в квадрате – это кинетическая энергия тела массой 2 кг, движущегося со скоростью 1 м/с, или кинетическая энергия тела массой 1 кг, движущегося со скоростьюм/с. Эта единица имеет особое наименование – джоуль (сокращенное обозначение Дж).
Кратные и дольные единицы
Наиболее прогрессивным способом образования кратных и дольных единиц является принятая в метрической системе мер десятичная кратность между большими и меньшими единицами.
В таблице 2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.
Следует учитывать, что при образовании кратных и дольных единиц площади и объема с помощью приставок может возникнуть двойственность прочтения в зависимости от того, куда добавляется приставка. Так, сокращенное обозначение 1 км2 можно трактовать и как 1 квадратный километр и как 1000 квадратных метров, что, очевидно, не одно и то же (1 квадратный километр = 1.000.000 квадратных метров). В соответствии с международными правилами кратные и дольные единицы площади и объема следует образовывать, присоединяя приставки к исходным единицам. Таким образом, степени относятся к тем единицам, которые получены в результате присоединения приставок.
Поэтому 1 км2 = 1 (км)2 = (103 м) 2 = 106 м2 [5].
Таблица 2
Множитель |
Приставка |
Обозначение приставки |
|
русское |
международное |
||
1018 |
экса |
Э |
Е |
1015 |
пета |
П |
Р |
1012 |
тера |
Т |
Т |
109 |
гига |
Г |
G |
106 |
мега |
М |
М |
103 |
кило |
к |
k |
102 |
гекто |
г |
h |
101 |
дека |
да |
da |
10-1 |
деци |
д |
d |
10-2 |
санти |
с |
c |
10-3 |
милли |
м |
m |
10-6 |
микро |
мк |
|
10-9 |
нано |
н |
n |
10-12 |
пико |
п |
p |
10-15 |
фемто |
ф |
f |
10-18 |
атто |
а |
a |
В нашей стране подлежат обязательному применению единицы Международной системы единиц (СИ), содержащей основные, дополнительные и производные единицы, а также десятичные кратные и дольные от них. Единицы СИ некоторых электрических величин приведены в таблице 3.
Таблица 3.
Электрическая величина |
Единица измерений |
|||
наименование |
обозначение |
наименова-ние |
русское |
международное |
Сила тока |
I |
ампер |
А |
A |
Напряжение, ЭДС |
U, E |
вольт |
В |
V |
Мощность активная |
P |
ватт |
Вт |
W |
Сопротивление |
R |
ом |
Ом |
Ω |
Емкость |
C |
фарада |
Ф |
F |
Индуктивность, |
L, M |
генри |
Гн |
H |
Частота |
f |
герц |
Гц |
Hz |
Длина волны |
λ |
метр |
м |
m |
Фазовый сдвиг |
φ |
радиан |
рад |
rad |
Библиографическая ссылка
Одинцов В.П. СИСТЕМЫ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН // Международный студенческий научный вестник. – 2021. – № 2. ;URL: https://eduherald.ru/ru/article/view?id=20649 (дата обращения: 26.12.2024).