1
Газарян А.Ш.
1
Мокриков С.С.
1
1 ФГБОУ ВО «Ставропольский государственный аграрный университет»
При написании статьи был проведен анализ и применены теоретические аспекты методов математической статистики, а также изучены оценки, которые применяются при анализе явлений, которые обладают свойством статистической устойчивости. Применяются следующие оценки: несмещенные, эффективные и состоятельные. Также рассмотрены величины, которые могут помочь при нахождении зависимости. Это: генеральная средняя и генеральная дисперсия. В качестве точечной оценки такого параметра, как генеральная средняя выступает выборочная средняя, а для параметра генеральная дисперсия точечной оценкой является выборочная дисперсия. Для более эффективного закрепления материала в статье приведены примеры с тщательно разобранным решением, которые помогли наглядно ознакомиться с методами точечной оценки.
математическая статистика
дисперсия
генеральная и выборочная средняя
1. Бондаренко Д.В., Бражнев С.М., Литвин Д.Б., Варнавский А.А. Метод повышения точности измерения векторных величин // Наука Парк. – 2013. – № 6 (16). – С. 66–69.
2. Долгополова А.Ф., Гулай Т.А., Литвин Д.Б. Финансовая математика в инвестиционном проектировании (учебное пособие) // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 8–2. – С. 178–179.
3. Долгополова А.Ф., Гулай Т.А., Литвин Д.Б. Совершенствование экономических механизмов для решения проблем экологической безопасности. // Информационные системы и технологии как фактор развития экономики региона: II Международная научно-практическая конференция. – 2013. – С. 68–71.
4. Литвин Д.Б., Гулай Т.А., Жукова В.А., Мамаев И.И. Модель экономического роста с распределенным запаздыванием в инвестиционной сфере // Вестник АПК Ставрополья. – 2017. – № 2 (26). – С. 225–228.
5. Литвин Д.Б., Долгополова А.Ф., Мелешко С.В. Cовершенствование механизма управления риском экологического ущерба // Финансово-экономические проблемы развития региона и учетно-аналитические аспекты функционирования предпринимательских структур: Сборник научных трудов по материалам Ежегодной 77-й научно-практической конференции / ФГБОУ ВПО «Ставропольский государственный аграрный университет» «Аграрная наука – Северо-Кавказскому федеральному округу». 2013. С. 471–474.
6. Литвин Д.Б., Шепеть И.П., Бондарев В.Г., Литвина Е.Д. Применение дифференциального исчисления функций нескольких переменных к разработке алгоритма определения координат объекта. // Финансово-экономические и учетно-аналитические проблемы развития региона: Материалы Ежегодной 78-й научно-практической конференции. – 2014. – С. 242–246.
7. Писаренко И.Н., Королькова Л.Н., Литвин Д.Б Необходимость исследования IDS как элемента инфраструктуры безопасности // Инновационные направления развития в образовании, экономике, технике и технологиях: Cборник статей. В 2 частях. / ФГБОУ ВПО «Донской государственный технический университет», Технологический институт сервиса (филиал). – 2016. – С. 139–142.
8. Litvin D., Ghazwan R.Q. Thinking skills product in mathematics among the students of the university // Экономические, инновационные и информационные проблемы развития региона материалы. Международной научно-практической конференции, 2014. – С. 5–9.
9. Litvin D.B. Mathematical self-concept among university students // Аграрная наука, творчество, рост: Сборник научных трудов по материалам IV Международной научно-практической конференции, 2014. – С. 326–329.
10. Litvin D.B., Popova S.V., Zhukova V.A., Putrenok E.L., Narozhnaya G.A. Monitoring of the parameters of intra-industrial differentiation of the primary industry of the traditionally industrial region of southern Russia // Journal of Advanced Research in Law and Economics. – 2015. – Т. 6; № 3. – С. 606–615.
Методы математической статистики используются при анализе явлений, которые обладают свойством статистической устойчивости. Сущность данного свойства заключается в том, что результат Х определённого опыта не может быть предсказан с большой точностью, где значение функции от результатов наблюдений при увеличении объёма выборки теряет своё свойство случайности и сходится по вероятности с неслучайной величиной θ [9].
В математической статистике применяются следующие оценки [3, 7]:
– несмещённые (значение математического ожидания оценки совпадает со значением оценивающего параметра, то есть );
– смещённые (оценка );
– эффективные (оценка, которая имеет при заданном объёме выборки n наименьшую дисперсию);
– состоятельные (оценка, которая стремится при по вероятности к оцениваемому параметру);
Точечной оценкой называют некоторую функцию результатов наблюдения , значение которой принимается за более приближенное в данных условиях к значению самого параметра θ, то есть оценку, определяющую одним числом [5, 2].
Часто, по результатам наблюдений количественного признака X требуется оценить следующие параметры распределения генеральной совокупности:
– генеральная средняя M(X);
– генеральная дисперсия D(X);
В качестве точечных оценок этих параметров выступают выборочная средняя и выборочная дисперсия и Dв соответственно [1, 4].
Генеральная средняя – среднее арифметическое значений генеральной совокупности :
– с повторениями
Выборочная средняя – среднее арифметическое значение выборки [3, 8].
То есть, имеется выборка объёма n, тогда выборочная средняя равна:
.
Выборочная средняя по данным одной выборки является определённым числом. Также выборочная средняя является несмещённой оценкой математического ожидания.
При увеличении объёма выборки n вся выборочная система стремится к генеральной средней [6, 9].
Генеральной дисперсией называют среднеарифметическое квадратное отклонение значений генеральной совокупности от их среднего значения.
Кроме дисперсий для характеристики рассеивания значений генеральной совокупности вокруг своего среднего также можно пользоваться средним квадратическим отклонением [10].
Выборочная дисперсия – среднее арифметическое квадратов отклонений, наблюдаемых значений выборки от их среднего значения.
Справедлива также формула:
.
Для исправления выборочной дисперсии необходимо умножить её на дробь:
.
Получаем исправленную выборочную дисперсию, которая является несмещённой оценкой генеральной дисперсии.
Также:
– с повторениями.
Для оценки рассеивания выборки служит выборочное среднеквадратическое отклонение.
Теперь рассмотрим, как применяются перечисленные данные при решении задач.
Пример 1.
Из генеральной совокупности извлечена выборка объёма n=30;
Необходимо найти несмещённую оценку генеральной средней и исправленную выборочную дисперсию.
Решение: Чтобы найти несмещённую оценку генеральной средней необходимо применить формулу:
;
Подставим значения из условия:
Зная выборочную среднюю, найдём выборочную дисперсию:
Теперь можем найти исправленную дисперсию:
.
Ответ: .
Вывод. Таким образом, по выборочной совокупности значений, наблюдаемого количественного признака, можно вычислить точечные оценки математического ожидания и дисперсии генеральной совокупности.
Библиографическая ссылка
Газарян А.Ш., Мокриков С.С. ТОЧЕЧНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ // Международный студенческий научный вестник. – 2018. – № 3-1.
;
URL: https://eduherald.ru/ru/article/view?id=18203 (дата обращения: 21.11.2024).
Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)