Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

BIOCHEMICAL PROCESSES OF ION CHANNEL TRANSDUCTION IN THE CELL AT THE INITIAL STAGES OF EMBRYOGENESIS

Tikhonov A.A. 1 Polekhina N.N. 1
1 FSBEI HE «Oryol State Institute named after I.S. Turgenev», Orel
The problem of studying the mechanisms of development at the early stages of embryogenesis (initial, early embryonic periods), that is, before the beginning of functional differentiation and stable genetic cascades, remains relevant to this day. In embryology, it is extremely common for structural features to arise and disappear even before the activity of genes is manifested. The organs and systems of the embryo arise as a result of induction, communicative and interstitial interactions. Their nature is unknown in most cases, but a number of authors assign a special place in the development of these processes to mechanosensitive ion channels. Mechanosensitive ion channels or stretch-controlled are membrane proteins capable of responding to mechanical stress in a wide dynamic range of external mechanical stimuli. Currently, they are the least studied class of ion channels and are of particular interest for understanding the mechanisms of cellular signaling. The article describes the biochemical processes and biomechanics of mechano-dependent ion channels. The principle of reading positional information by cells of a developing embryo is substantiated from a biochemical point of view on the example of the neuroerithelium, some similar examples of the device and operation of mechano-dependent channels are given, as well as the ways they transmit positional information described in cytology.
mechano-dependent ion channels
signaling pathways
secondary messengers
mechanotransduction

Введение. Для выяснения механизмов специфических клеточных реакций в норме и патологии, при формировании мозга, рядом отечественных ученных проводились эксперименты на животных. При изучении рецепторных свойств эмбриональных клеток проводилось кратковременное и обратимое растяжение или сжатие нейроэктодермы на стадиях бластулы, гаструлы, нейрулы и нервной трубки у четырех видов амфибий.

Полученные учеными данные доказывают, что наиболее вероятно роль механорецепторов в нейроэпителиальных клетках выполняют механозависимые ионные каналы, описанные в большинстве тканей животных и растений. Использование рентгеновской микроспектрометрии в сочетании со сканирующей электронной микроскопией показало, что у нейроэпителиальных клеток, находящихся в поле экспериментального растяжения, через 7 мин возрастает концентрация некоторых внутриклеточного ионов (хлора), в то время концентрация других (калий, кальций) не изменяется. Проведение эксперимента при температуре тающего льда показало, что активации механозависимых ионных каналов у амфибий не происходит. Это позволило сделать вывод о том, что процесс активации является энергозависимым [1].

В ряде экспериментов зарубежных авторов (Хегер и Френч, 1999) было обнаружено, что механотрансдукция чувствительна к теплу. Полученные данные были хорошо согласованы с уравнением Аррениуса, чтобы дать среднюю энергию активации 23 ккал / моль (97 кДж / моль или Q10 = 3,2 при 20 ° C). Это подтверждает общий вывод о том, что механотрансдукция сопряжена со значительным энергетическим барьером, сравнимым с энергией, необходимой для разрыва ковалентной химической связи [2].

Результаты исследования. Существует несколько типов каналов, активируемых растяжением. К первому относится механически закрытые каналы, на которые непосредственно влияют механические деформации мембраны. Ко второму относятся механически чувствительные каналы, которые открываются вторичными мессенджерами, высвобождаемыми из истинного механически закрытого канала.

В ряде исследований зарубежными учеными были обнаружены два разных механизма открытия ионных каналов, активируемых растяжением: механические деформации в клеточной мембране могут увеличить вероятность открытия каналов. Белки внеклеточного матрикса и цитоскелета связаны с вне- и внутриклеточными доменами ионных каналов активируемых растяжением. Напряжение заставляет эти белки действовать как промежуточное звено передачи сигналов, что приводит к открытию ионного канала [3].

Механическая деформация клеточной мембраны может быть достигнута с помощью ряда экспериментальных вмешательств, включая магнитное возбуждение наночастиц. Примером этого является контроль поступления кальция в аксоны в нейронных сетях. Обратите внимание, что это не указывает на "магнитную стимуляцию" механочувствительных каналов. Чем больше положительное напряжение, тем выше вероятность открытия канала [4].

Модель пружинного троса заключается в том, что он прикреплен непосредственно к каналу и может находиться как в цитоскелете, так и во внеклеточном матриксе, связывая эти элементы вместе. Когда внешние раздражители отклоняют трос, смещение открывает канал [5]. Было продемонстрировано, что этот конкретный механизм отвечает за стробирование волосковых клеток, которые отвечают за слух у позвоночных [6].

Механотрансдукция Rac (подсемейство Rho GTPases (гуанозинтрифосфатаз), которые координируют клеточный ответ на внеклеточные сигналы) рассматривается как принудительный процесс, инициирующий биохимические реакции, такие как изменение состояния фосфорилирования и/или конформации. Помимо этого белки подсемейства Rac инициируют сигнальные пути, ведущие к экспрессии генов, синтезу белка и изменению клеточного фенотипа. Активация запускается механическим стрессом через вторичные мессенджеры и экспрессию генов.

К другим принципам механотрансдукции относятся ионные каналы активируемые растяжением, мембранная механотрансдукция (через G-белки и рецепторы, связанные с G-белком) и различные другие белки, которые соединяются с FAs / adhesion (фокальные контакты) и цитоскелетом [7].

Фока́льные конта́кты (англ. focal adhesions) — межклеточные контакты, которые представляют собой скопление интегриновых рецепторов на клеточной мембране, которые связывают клетку с внеклеточным матриксом. Они обеспечивают сильное прикрепление клеток к внеклеточному матриксу и участвуют в передаче механического напряжения на мембране клетки. Они задействованы во многих сигнальных путях клетки, в частности, активирующихся в ответ на механический стресс, благодаря наличию в них киназы фокальных контактов (FAK). Участвуя в передаче сигнала, они влияют на рост, выживание и миграцию клеток [8].

Напряжение сдвига на мембране может влиять на конформацию трансмембранных белков, что приводит к активации MAPK, Rho и других сигнальных путей, или ограничивает аутокринную передачу сигналов [7]. Работа сигнальных путей МAРК заключается в том, что рецепторы активируют ГТФазы семейств Ras и Rho. Они передают сигнал на модуль, состоящий из нескольких митоген-активируемых киназ. Этот каскадный механизм передачи приводит к тому, что MAPK фосфорилируют белки-мишени по остаткам серина и треонина и таким образом передают сигнал дальше, например, в ядро клетки. Кроме киназ, в состав сигнальных путей входят протеинфосфатазы и белки, которые обеспечивают сборку белковых комплексов [9,10].

Сигнальный путь ERK (Ras-ERK, MAPK/ERK) относится к ключевым сигнальным кассетам в системе MAPK и представлен двумя близкими по структуре белками, ERK1 и ERK2. Около цитоплазматической части рецепторов собирается сигнальный комплекс из множества белков, который, в конце концов, активирует ГТФазу Ras [11]. Она запускает каскад реакций, где конечная киназа (ERK1/2) проникая в ядро, регулирует транскрипцию через индукцию ранних генов c-Fos и c-Myc, обеспечивающих в свою очередь транскрипцию поздних генов, ответственных за пролиферацию, выживание и подвижность клеток [10].

Рядом ученых предполагается, что деформация ядра приводит к изменениям конформации хроматина, что может напрямую влиять на транскрипцию. Опосредованные несприном соединения с цитоскелетом обеспечивают механосенсорные функции в клетках, поскольку отсутствие или разрушение членов семейства несприн в ядерной оболочке мешает способности клетки ощущать механические воздействия и реагировать на них [12]. Так же исследования In vitro показали, что актин является критическим элементом в механотрансдукции модуля упругости ткани и статического натяжения. Модуль упругости субстрата влияет на экспрессию генов катаболических ферментов клетками сухожилий [13].

Заключение. Исходя из вышеизложенного, можно заключить, что механотрансдукция в действительности может иметь место в формообразовании зародыша на ранних стадиях эмбриогенеза (до 8 недели). То есть активатором генетических каскадов у человеческого зародыша будет являться формообразование, которое во времени и пространстве распределяет геном, а сам геном будет являться ингибитором (реакционно-диффузная модель Тьюринга). На поздних же стадиях морфогенетические каскады будут выключаться, но они задают тот вектор, реализующийся позже генетическими каскадами и автогенетическим контролем.

Процесс активации механозависимых ионных каналов в действительности является энергозависимым и сопряжен с разрывом ковалентных связей макроэргов, активацией вторичных мессенджеров и с запуском ими каскадных реакций для передачи информации в генетический аппарат клетки и последующим клеточным ответом.