Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

ADAPTIVE(SELF-TUNING) AUTOMATIC CONTROL SYSTEMS

Kaldybaev R.S. 1
1 Samara State Technical University
The article presents an analytical review of adaptive control systems. The author considers the development of adaptive systems, problem statement, classification and structure of adaptive systems. Functional diagrams of adaptive systems and methods for setting parameters of the adaptive control system controller are given. A reference model is described for the operation of some types of SNA. The article also reports on the new structures of the SNA. A separate section is a description of active and passive SNS. The adaptation process and its properties are described as: • the output parameters of the object; • observe the behavior of the object; • deviation of the quality indicator;
adaptive systems
technical systems
sns (self-adjusting systems)
adjustable model (pm)
acs (automatic control systems)

Введение

Разработка адаптивных систем автоматического управления привлекала исследователей задолго до создания предпосылок для их широкого внедрения. Различные структуры и алгоритмы СНС предлагались в общих чертах без конкретизации принципов действия отдельных блоков. При классификации СНС в разной литературе приоритет отдавался разным критериям, что привело к их существенному несовпадению. Современный уровень техники позволяет реализовать сколь угодно сложные алгоритмы управления почти без удорожания системы в целом за счет применения цифровых регуляторов на основе микропроцессоров. Это требует разработки последовательной классификации различных видов СНС, наполненной конкретными схемами их реализации с наиболее полной детализацией основных блоков и разъяснением их принципов действия. Для различных вариаций применений необходим анализ их относительных преимуществ и недостатков.
Существуют общие свойства, характеризующие процесс адаптации:

· выходные параметры объекта регулирования и характеристики возмущающих факторов находятся под постоянным контролем и управлением с помощью устройств, дополнительно включаемых в состав управляющей системы;

· наблюдаемое поведение объекта описывается некоторым показателем качества, оценивающим в количественной форме характер протекания процесса управления;

· отклонение показателя качества за пределы допуска влечет за собой автоматическую настройку параметров регулятора или замену алгоритма управления, результатом которых является достижение желаемого показателя качества или реализации поставленной цели.

1 Адаптивные системы.

Адаптивные системы возникают в связи с усложнением решаемых задач, отсутствием практической возможности подробного изучения процессов в управляемых объектах. Примерами таких объектов могут быть: многокомпонентные технологические процессы химической продукции; высокоскоростные летательные аппараты (ракеты). Это те объекты, где априорные данные о характеристиках или уравнениях, описывающих все реакции, получить невозможно, слишком широкий разброс параметров. Неадаптивные методы управления предусматривают наличие достаточного объёма априорных сведений о внутренних и внешних условиях работы на предварительной стадии. Чем полнее априорная информация о характеристиках, тем выше качество неадаптивного управления. Эффект приспосабливаемости к изменениям условий внешней среды в адаптивных системах достигается за счёт того, что часть функций по получению, обработке и анализу недостающей информации об управляющем процессе осуществляется не на предварительной стадии, а самой системой в процессе работы. Это способствует более полному использованию рабочей информации. Развитие вычислительной техники открывает новые возможности в области реализации адаптивных систем автоматического управления (САУ), например, в случае настройки САУ в процессе эксплуатации в реальном масштабе времени при изменении динамических характеристик объектов управления.

С целью преодоления недостатков работы САУ в алгоритм настройки САУ (и в его структуру) в дополнение к эталонной модели вводится вторая эталонная модель, называемая подстраиваемой моделью (ПМ) .С помощью ПМ осуществляется параметрическая идентификация САУ, при которой ПМ подстраивается к настраиваемой САУ. После чего выполняется настройка ПМ к заданным требованиям качества работы САУ с использованием эталонной модели (ЭМ) специального вида (параметрическое множество ЭМ).[1]

Обычно адаптивная система содержит в качестве «ядра» схему, реализующую один из фундаментальных принципов управления, а контур адаптации пристраивают к ней как вторичный, осуществляющий коррекцию параметров. [2]

2 Постановка задачи проектирования адаптивного управления.

1. Проектирование САУ ведется в предположении, что параметры ее элементов не изменяются, а внешние возмущения имеют определенный вид и величину. Однако, в условиях широкого диапазона изменения параметров в результате эксплуатации и внешних возмущающих воздействий нельзя добиться требуемого качества управления, не придав новых свойств САУ, учитывающих изменяющиеся параметры.

Наилучшим решением данного вопроса является придание САУ свойств адаптивности (приспосабливаемости) с тем, чтобы она могла изменять свои характеристики в зависимости от изменения внешних условий, параметров управляющего устройства или объекта управления.

Все САУ можно разделить на две группы:

- САУ с заранее (априорно) заложенными характеристиками, не обладающие способностью контролируемого изменения свойств в процессе реальных условий работы,

- САУ адаптивные (приспосабливающиеся), которые обладают свойством контролируемого изменения характеристик, приспособления к изменению внутренних и внешних условий работы.

2. Особенностями адаптивных систем является выполнение ими трех функций:

- получение и анализ текущей информации об управляемом процессе (идентификация);

- решение задачи синтеза по заданному показателю качества;

- реализация процесса контролируемого изменения свойств системы управления.

Для выполнения этих функций в основной контур управления вводится вычислительное устройство (ВУ), имеющее три взаимодействующих блока: анализатор, синтезатор, исполнительное устройство.

Анализатор - решает задачу получения и анализа текущей информации, характеризующей динамические свойства системы и действующих возмущений.

В зависимости от типа анализатор может получать текущую информацию на основе анализа динамических характеристик всей замкнутой САУ или ее объекта управления, с одновременной оценкой характера управляющих и возмущающих воздействий.

Синтезатор - решает задачу синтеза адаптивных свойств системы в зависимости от проанализированного изменения ее параметров, структуры или алгоритма управления.

Исполнительное устройство - передает выходные воздействия с ВУ на управляющее устройство основного контура управления, вызывая перестройку параметров или вырабатывая пробные управляющие воздействия для получения дополнительной текущей информации о динамических свойствах объекта управления.

3. По диапазону адаптивных свойств САУ можно разделить на три основных класса:

- самонастраивающиеся САУ (СНС), которые обеспечивают контролируемое изменение параметров или управляющих воздействий;

- самоорганизующиеся САУ (СОС), обеспечивающие контролируемое изменение структуры, а также возможное изменение параметров и управляющих воздействий;

- самообучающиеся САУ, в которых обеспечивается контролируемое изменение структуры, параметров и алгоритмов управления с использованием опыта функционирования.

Самонастраивающейся системой называют такую САУ, которая в процессе эксплуатации при изменении характеристик и внешних воздействий или параметров объекта управления самостоятельно без участия человека изменяет параметры САУ, ее структуру, а также настройку для поддержа ния оптимального режима работы управляемого объекта.[3]

Рис.2 Общая схема СНС: А - анализатор, С - синтезатор, ИУ - исполнительное устройство, КСН - контур самонастройки, ОКУ- основной контур управления, УУ - управляющее устройство, ОУ - объект управления, ОС - обратная связь.

2 Самонастраивающиеся системы (СНС).

Самонастраивающиеся системы — это такие системы, которые обладают способностью в той или иной мере приспосабливаться к изменяющимся внешним условиям. Именно благодаря такой способности самонастраивающиеся системы не требуют полной начальной информации о свойствах управляемого процесса. Действия по управлению объектом сочетаются в них с непрерывными или периодическими испытаниями объекта. За счет результатов этих испытаний выполняется недостаток начальной информации. В искусственных или технических системах самонастройки произошло их разделение на четыре группы:

- системы экстремального регулирования (системы автопоиска максимума или минимума управляемой величины);

- системы регулирования с самонастройкой параметров корректирующих устройств;

- самооптимизирующиеся системы автоматического управления;

- обучаемые САУ.[3]

2.1 СНС с эталонной моделью.

Она показывает идеальную желаемую реакцию системы на задающий сигнал g(t). В качестве эталонной модели применяют типовые звенья систем автоматического управления (например, апериодическое звено). Параметры ПИД-регулятора (пропорционально-интегрально-дифференциальный регулятор) настраиваются так, чтобы минимизировать рассогласование между выходом модели и реальной системы.

Задача контура настройки состоит в том, чтобы свести это рассогласование к нулю за определенное время с гарантией устойчивости переходного процесса. Данная проблема далеко не тривиальна – можно показать, что она не решается при линейных соотношениях «ошибка – коэффициенты регулятора». Например, в литературе предложен следующий алгоритм настройки параметров:

где k – настраиваемые коэффициенты ПИД-регулятора; А – постоянный коэффициент, задающий скорость адаптации.

Рис. 8. Блок-схема адаптивной системы с эталонной моделью.

Функция градиента определяет чувствительность ошибки c(t) к вариации коэффициентов регулятора. Абсолютная устойчивость замкнутой системы, которая является существенно нелинейной, обеспечивается подбором параметра А в программе настройки. Таким образом, управляющий компьютер для реализации адаптивного управления по данной схеме должен в реальном времени решать следующие задачи:

· формировать задающий сигнал для управляемой системы;

· рассчитывать идеальную реакцию по эталонной модели;

· вычислять коэффициенты регулятора в соответствии с программой настройки, определять текущую ошибку и выдавать сигнал управления на вход мехатронного модуля.

Помимо рассмотренной блок-схемы с эталонной моделью известны и другие методы автоматической настройки параметров и структуры регуляторов.[4]

4 Структура и типы адаптивных систем управления.

Адаптивная система управления называется поисковой, если в нее для изучения объекта подаются специальные (поисковые) сигналы, и беспоисковой, если в систему никаких поисковых сигналов для изучения объекта не подается.

Беспоисковые адаптивные системы управления по способу получения информации для подстройки параметров регулятора делятся на адаптивные системы управления (или самонастраивающиеся системы (СНС)) с эталонной моделью и адаптивные системы управления с идентификатором. Адаптивные системы управления с эталонной моделью содержат динамическую модель системы, обладающую требуемым

СНС с эталонной Рис. 12.3. СНС с идентифика-

Рис. 10. СНС с эталонной моделью Рис. 11. СНС с моделью-идентификатором

качеством и называемую эталонной моделью (рис. 10). Адаптивная система управления с эталонной моделью (ЭМ), кроме основного контура, содержащего регулятор (Р) и объект (О), включает контур с ЭМ и преобразовательное-исполнительное устройство (ПИУ). Эталонная модель вырабатывает желаемый (эталонный) выходной сигнал.

Преобразовательное-исполнительное устройство (его также называют механизмом адаптации) обрабатывает разностный сигнал (разность между фактическим и эталонным сигналами) и производит подстройку параметров регулятора. Выбор эталонной модели является частью процесса синтеза адаптивной системы управления.

Адаптивные системы управления с идентификатором в контуре адаптации содержат идентификатор, который служит для идентификации (определения) неизвестных параметров объекта на основе изучения входного и выходного сигналов объекта. Полученная идентификатором информация затем используется для определения нужных значений параметров регулятора и их подстройки.

Возможны два способа адаптивного управления с идентификатором: прямой и непрямой. При непрямом адаптивном управлении сначала получается оценка параметров объекта, а затем на основе полученных оценок определяются требуемые значения параметров регулятора и производится их подстройка. При прямом адаптивном управлении исключается этап идентификации параметров объекта. В этом случае, учитывая, что между параметрами регулятора и объекта имеется связь, определяемая выбранным законом управления, производится непосредственная оценка и прямая подстройка параметров регулятора. [5]

Заключение.

В результате анализа наиболее существенных признаков адаптивных систем предложена следующая классификация самонастраивающихся систем. Системы с адаптацией по помехе (или иным сигналам, косвенно или прямо описывающим изменение параметров объекта или условий его действий). С эталонной моделью объекта (не уточняемой). С идентификатором объекта или с уточняемой его моделью. С блоком прогноза выхода объекта. Системы с адаптацией по ошибке управления. Экстремальные системы, переводящие систему в состояние вблизи экстремума. Наибольший практический интерес вследствие наибольшей универсальности и наилучшего эффекта представляют, по-видимому, системы со стабилизацией основного контура и системы с идентификатором или с уточняемой моделью объекта.