Введение. Современная медицина активно разрабатывает и внедряет в практику разнообразные биотехнологии, которые открывают возможности для более полной и точной диагностики и лечения патологических состояний, ранее недоступных для коррекции. Идея регенеративной терапии различных заболеваний с использованием стволовых клеток - одно из магистральных направлений медицинской науки. К перспективным технологиям в контексте данного направления относится терапевтическое клонирование.
Терапевтическое клонирование заключается в получении пациент-специфичных линий эмбриональных стволовых клеток (ЭСК), обладающих колоссальными возможностями в поддержании и восстановлении здоровья человека. С биологической точки зрения, терапевтическое клонирование – это то же репродуктивное клонирование, но с ограниченным (до 14 дней) сроком роста эмбриона. По прошествии обозначенного временного промежутка процесс размножения клеток приостанавливается. Название метода предопределено тем, что образующиеся в течение двух недель эмбриональные клетки способны в дальнейшем преобразоваться в дифференцированные клетки различных органов: сердца, печени, поджелудочной железы, почек и т.д. Этот факт благоприятствует использованию данного метода в медицине для терапии многих заболеваний [5].
Выделяя стволовые клетки из эмбриона, срок жизни которого не более 3 - 4 дней, их дальнейший алгоритм развития в лабораторных условиях можно спроектировать в любом направлении. В теории, стволовые клетки способны дать начало любой структуре тела человека, способной заместить патологически изменный фрагмент или даже орган. В том случае, если они получены из тканей, взятых у человека, которому выращивают трансплантат (аутотрансплантация), также решается проблема гистосовместимости при пересадке.
Технология искусственного получения эмбриональных стволовых клеток с помощью клонирования активно разрабатывается в комплексе с биохимическими направлениями по созданию специальных питательных сред для культивирования живых тканей.
При ПЯСК осуществляется перенос ядра, извлеченного из соматической клетки пациента, в цитоплазму энуклеированного ооцита, находящегося в метафазе второго деления мейоза. Как результат, развивающийся эмбрион будет генетической копией донора ядра. По достижении стадии бластоцисты, из ее клеточной массы выделяют клонированные ЭСК и производят исследования свойств полученных клеточных культур [1, с. 207].
Проведение экспериментов с использованием яйцеклеток человека затрудняют различные проблемы этического и биомедицинского характера. Это законодательные нюансы, связанные с получением разрешений регулирующих органов, проблема оценки качества образовавшихся в организме клеток, риск возникновения мутаций при генно-инженерных манипуляциях и т.д.
Разработка методик формирования линий стволовых клеток человека, несущих генетический материал пациента (полученных методом ПЯСК), откроет широкие перспективы для дальнейших исследований в области клеточной терапии.
Индукция репрограммирования стволовых клеток (ИРСК) человека в плюрипотентные стволовые клетки происходит при внедрении в клетки исходной культуры генов плюрипотентности, способных вернуть взрослые клетки в эмбриональное состояние.
Лаборатория японского учёного С. Яманаки работала над поиском факторов, поддерживающих в ЭСК программу плюрипотентности. Было найдено несколько десятков генов, активность которых в ЭСК была намного выше, чем в дифференцированных клетках. К моменту исследования уже был открыт и тот факт, что слияние ЭСК и специализированной клетки может дать две плюрипотентные клетки [2].
Вооруженная этим знанием, группа учёных внедрила в клетку фибробласта вектор с 24 генами, заставившими часть клеток дать колонии, подобные стволовым клеткам, и принялась по одному удалять гены из этого набора. В результате был установлен список из четырех генов: c-Myc, Oct4, Sox2 и Klf4 (Nanog и Lin28). Стоит отметить, что схема репрограммирования основана на внедрении в культуру соматических клеток человека ретровирусов, несущих такой генный набор. Полученные клетки, названные индуцированными плюрипотентными стволовыми клетками (ИПСК), возникли в результате вышеупомянутой процедуры, имеющей крайне низкий выход, однако применяемые технологии селекции позволяют обнаружить даже одну перепрограммированную клетку на сотни тысяч. Далее последовала серия работ этой и других лабораторий, в которых исследователи оптимизировали состав перепрограммирующих факторов и способ введения вектора в клетку, чтобы повысить эффективность перепрограммирования и снизить вероятность образования опухолевых клеток в результате вызываемой метаморфозы [3].
Гены Sox2 и Oct4 кодируют ключевые белки, необходимые для пролиферации (деления) и поддержания плюрипотентности стволовых клеток. Продукты генов c-Myc и Klf4 способствуют активации Sox2 и Oct4. Ген c-Myc является протоонкогеном: при его гиперэкспрессии может происходить злокачественная трансформация нормальных клеток. Продукт гена Nanog требуется для индукции плюрипотентности соматических клеток. В последних исследованиях была показана целесообразность замены c-Myc и Klf4 на Lin28 и Nanog. Дальнейшую селекцию культур ИПС клеток проводят по соответствию морфологических (компактность колоний, высокое ядерно-цитоплазматическое соотношение и т.д.), иммуногистохимических и генетических характеристик с ЭСК человека [4, с. 9].
Получение стволовых клеток методами ИРСК и ПЯСК не является равноценными и по технологии, и по возможным осложнениям. Применение в клеточной терапии методик, основанных на использовании ретровирусной трансфекции и внесения в клетки протоонкогенов, может представлять опасность. Несмотря на то, что сторонники метода ИРСК уверяют, что указанные проблемы легко преодолимы, сторонники ПЯСК убеждены в необходимости ускорения исследований в наиболее спорных направлениях (использование яйцеклеток человека в ПЯСК и т.д.) для скорейшего внедрения методики переноса ядра, как наиболее перспективной и безопасной. Наряду с этим, пока недостаточно проработаны гарантии безопасности биологического материала при генно-инженерных манипуляциях. Для успешного развития и внедрения в медицинскую практику данных технологий требуется не только детальная разработка вариантов самой методики, но и определение чётких показаний и противопоказаний для ее применения. Кроме того, необходимо наличие совершенных критериев оценки и методов коррекции отдаленных результатов, обучение высококвалифицированных специалистов, совершенствование материальной базы клиник и законодательной базы.
Тем не менее, несмотря на имеющиеся сложности, терапевтическое клонирование отмечается большинством специалистов как одно из наиболее перспективных направлений в заместительной клеточной терапии и, в целом, в мировой научной практике. Важнейшей потребностью сейчас является получение законодательного разрешения на проведение исследований, способствующих стремительному развитию данного направления, и преодоление уже выявленных недостатков и сложностей биомедицинского характера.