Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

OPTIMIZATION OF METHODS AND MEANS OF PROTECTION OF PEAT AND PEAT BOGS

Asatryan V.A. 1 Belozerov V.V. 1 Bykov D.A. 1
1 Don State University
The article provides a systematic analysis of the problems associated with the study of peat deposits, with their development, storage and use of peat, including its ability to self-heat. It is shown that extinguishing peat fires with water makes it impossible to exploit peat deposits, that is, it practically destroys this energy resource. A model of an automated complex for detecting, preventing and extinguishing fires with existing gas peat trunks that are being developed into thermoelectric probes is proposed, and they allow to suppress the spontaneous combustion of peat using nitrogen, obtained by membrane separation of air using the TGA-5/10 mobile unit manufactured by the Krasnodar Compressor Plant, protected by Russian patent for an industrial design. The research methodology is based on a new domestic method of "nitriding" peat, which is protected by a Russian patent for an invention. The novelty of the study lies in the fact that when developing a model of a mobile automated complex, in addition to thermal location and suppressing the self-heating peat by gas-peat trunks with thermal probes, proposed in this Russian patent, a scheme of vertical electric sounding of peat bogs was synthesized by appropriate refinement of gas-peat trunks into thermal electric probes. At the same time, for reliable detection of the self-heating center, the method of 4-point passive location (differential-ranging with basic correlation processing) is used, which is significantly more reliable than the triangulation method.
peat
spontaneous combustion of peat bogs
thermo-electro-sounding
thermal location
self-ignition center
air separation
nitriding of peat

Торф является возобновляемым природным ископаемым. Мировой ресурс торфа, по оценкам экспертов составляет от 250 до 500 млрд. тонн. При этом ежегодно в мире образуется почти 3,0 млрд. кубометров торфа, что на два порядка (!) больше, чем используется [1,2].

Советский Союз являлся первой страной в мире по учтенным запасам торфа в количестве 200 млрд. т, в том числе в России - 154,6 млрд. т., со следующим распределением по типам: верховой торф составляет 81,7 млрд. т, переходной - 23,4 млрд. т, низинный - 44,7 млрд. т и смешанный - 4,7 млрд. т [2].

Сегодня лидером по запасам торфа является Канада, где сосредоточено 170 млрд. Далее следуют – Россия, Швеция, Финляндия, Германия, Белоруссия и т.д. При этом прирост запасов торфа оценивается в среднем в 150 тысяч тонн на каждые 1 млрд. тонн запасов, поэтому в ряде стран торф относится к энергоресурсам, как биотопливо, и теплоэлектростанции на нем вносят существенный вклад в энергетику [3]:

- в Финляндии 15% тепловой энергии получают за счет торфа,

- в Ирландии 10% генерации электроэнергии приходится на торф,

- в Белоруссии доля торфа в энергобалансе достигает 5%.

В настоящее время торфяная промышленность стала не конкурентоспособной по сравнению с угольной - с точки зрения топлива, а с нефтегазовой и химической – как сырья (для удобрений и прочих продуктов). В СССР торф использовался комплексно - как топливо, для удобрений, в строительстве, в медицинских целях, в химической промышленности и др. Так, в 50-е годы прошлого века в России ежегодно добывалось более 50 млн. т торфа, которые использовались на 80-ти электростанциях, работающих на торфе, и для производства сельскохозяйственных удобрений объемом более 150 млн. т в год. В этот период индустриального расцвета торфяной отрасли активно функционировало более 300 торфо-предприятий. Такие производственные объединения как «Ленторф», «Калининторф», «Шатураторф» и другие добывали каждое в отдельности более 5 млн. т торфа за сезон. Но уже в 2000 году объем добычи торфа в России составлял 13,6 млн. т, а в 2005 объемы добычи торфа снизились до 4 млн. т. [1-3].

В настоящее время Правительство РФ внесло в Госдуму поправки к ФЗ «Об электроэнергетике» о поддержке электростанций на торфе, что должно переломить ситуацию с его использованием. Однако, как показывает статистика, с каждым годом возрастают масштабы торфяных пожаров, поэтому защита торфа от самовозгорания и предотвращение пожаров торфяников приобретает чрезвычайно важное социальное и экономическое значение и в нашей стране, и за рубежом [2,4].

Добыче торфа, как правило, предшествуют осушение залежи. Поверхность торфяника очищается от растительности и делится каналами на соответствующие участки, понижая тем самым уровень грунтовых вод и влажность торфа [5].Но именно при осушении торфа возникает опасность его самовозгорания из-за продуктов жизнедеятельности микроорганизмов, разогревающих его массу до 70 градусов Цельсия. Возникающие при этом процессы деструкции, вызывают дальнейшее повышение температуры. Такой самонагрев и самовоспламенение происходят и при хранении добытого торфа [3,4].

Несмотря на то, что бесполезность тушения торфяных пожаров водой доказана ещё в конце прошлого века, многие современные патенты в области тушения торфяных пожаров [№ 2087167, № 2194553, № 2277956 и т.д.] «продолжают изобретать» водяные методы и создавать специальные средства для этого, не взирая на то, что заливка водой торфяника делает невозможным его эксплуатацию, т.е. добычу и использование торфа [6-8].

Известны разные методы тушения пожаров на торфяниках, в т.ч. безводными способами, один из которых, например, заключается в создании барьера по контуру наиболее пожароопасных участков, до возникновения очагов самовозгорания и во время пожаров. Барьер состоит из смеси измельченных карбонат содержащей (с содержанием карбоната магния и/или карбоната кальция в сумме не менее 90%) и опал-кристобалитовой (с содержанием оксида кремния не менее 80%) пород, взятых в соотношении 2:1 с добавкой глинистых минералов 7% и кремнефтористого натрия 3%, до 100% к основной смеси. В качестве компонентов такой смеси могут быть использованы магнезит, доломит, известняк, трепел, опока, диатомит. При распространении огня к траншее минеральный материал разлагается с выделением углекислого газа, который снижает содержание кислорода в воздухе. Оксиды магния и кальция начинают взаимодействовать с указанными добавками с образованием устойчивого к высоким температурам пористого барьера, который препятствующий распространению огня. Недостатком способа являются, во-первых, уничтожение торфа пожаром, во-вторых, высокие единовременные и эксплуатационные затраты на его осуществление, а в-третьих, отсутствие возможности осуществлять локацию и предотвращать самовозгорание торфа [7].

Существуют газовые способы тушения лесов и торфяников: «бомбами» с жидким азотом, «брикетами» с гранулами диоксида углерода и др., но они имеют «поверхностную эффективность», а самовозгорание торфа и развитие пожара происходит в глубине торфяника, куда они попасть не могут [7].

В ДГТУ был разработан метод азотирования торфа, который заключался в том, что с помощью установки сепарации воздуха (мембранной или термомагнитной), из окружающей атмосферы отделялся кислород, а азот с помощью газо-торфяных стволов-термозондов (ГТСТЗ) вводился в зону саморазогрева торфа. Эта зона определялась тремя ГТСТЗ, путем тепловой локации «очага саморазогрева» методом триангуляции (рис. 1 «а»), что позволяло выдавить кислород из зоны действия ГТСТЗ и заместить его охлажденным азотом, чем предотвратить самовозгорание или подавить уже начавшийся процесс тления, обеспечив таким образом, безопасную добычу и хранение торфа [7,8].

Однако, автоматизированный комплекс, реализующий указанный способ на мотопомпах «Гейзер-1200» или «Гейзер-1600», во-первых, требовал буксировки на торфяник, что в условиях бездорожья значительно затрудняло их применение, во-вторых, отсутствие отработанных алгоритмов пространственной тепловой локации вызывало сомнение в точности определения «очага» саморазогрева или пожара, а в-третьих, и это было главным – автоматизация ГТСТЗ на радиомодулях снижало надежность функционирования комплекса в полевых условиях [5,7-9].

а) б)

1- мотокомпрессор (1- двигатель, 2-компрессор); 3 - сепаратор воздуха; 4 – ресивер; 5 – радио блок управления (контроллер с радиомодемами и приемопередатчиком ГЛОНАСС); 6 – торфяник; 7 – радио контроллер ГТСТЗ с термодатчиками (7.1 и 7.2); 8 – газовый рукав; 9 – радиоканал с ГТСТЗ; 10 - радио контроллер ГТСТЗ с термодатчиками (10.1 и 10.2); 11 - газовый рукав; 12 – радиоканал с ГТСТЗ.

Рис. 1 - Схема установки обнаружения и тушения торфяника на мотопомпе (а) и КАМАЗе (б)

В качестве альтернативы изобретению [7], была разработана модель автоматизированной установки, которая устраняет перечисленные недостатки, во-первых, применением высоко проходимой серийной мобильной азотной станции ТГА 5/10 мощностью в 300 л.с. (рис.1 «б») с производительностью 5 Нм³/мин. и давлением в 10 атм., при чистоте азота в 98-99% с габаритными размерами - 6,0×2,5×3,6 м. и массой в 11,5 тонн [10], а во-вторых, учитывая необходимость подключения ГТСТЗ к газовым шлангам (использование стандартных пожарных рукавов), для связи с контроллером и датчиками ГТСТЗ (в отличие от запатентованной схемы) применены контрольные кабели с соответствующими разъемами (рис.2), что позволило автоматизировать процесс на высокопроизводительном и надежном многофункциональном контроллере TREI-5B-05 [11].

Более того, в этом случае, помимо реализации блок-схемы автоматизации на одном контроллере с необходимыми модулями (2 канала дискретного вывода с ШИМ-выходом и 1 канал ввода напряжения низкого уровня), появляется возможность применить методы электроразведки, а именно - метод вертикального электрического зондирования (ВЭЗ), который даст возможность не только повысить достоверность обнаружения условий саморазогрева торфа и его очага, но и осуществлять электрическое профилирование торфяника [11-13].

Это позволило по удельному электрическому сопротивлению вычислять пористось, влагонасыщенность и глинистось, а также некоторые другие свойства, которые характеризуют «стадию роста торфяника» (рис.3), а также давали возможность прогнозировать срок его саморазогрева [12,13].

Рис.2 – Структурная схема автоматизации на МФК TREI-5B-05

ВЭЗ article10a

Рис. 3 – Схема измерений в методе ВЭЗ

Дело в том, что когда в земле возникает электрическое поле и начинает протекать электрический ток, то силу тока в питающей линии (IAB) измеряют с помощью амперметра, включенного в цепь АВ (рис.3), а на приемных электродах M и N возникает разность потенциалов (DUMN), которая измеряется с помощью вольтметра [13].

По результатам измерений можно судить об электрических свойствах горных пород на глубинах проникновения тока в землю. По результатам выполненных измерений вычисляют кажущееся удельное электрическое сопротивление (КС), обозначаемое ρк, и измеряемое в Ом·м [12,13]:

где K – геометрический коэффициент (зависит от взаимного расположения и расстояний между электродами A, B, M и N), ?UMN – разность потенциалов на приемных электродах M и N, IAB – сила тока, протекающего в питающей линии.

Для реализации предлагаемого способа термо-электро-зондирования, изобретенные газоторфяные стволы легко модернизируются. При этом тепловая локация очага саморазогрева или пожара осуществляется по данным многократного опроса ТСМ-50, установленных в «нижних частях» всех 4-х ГТС, методом 4-х точечной пассивной локации (разностно-дальномерным методом с базово-корреляционной обработкой), которая значительно достовернее метода триангуляции, т.к. позволяет получить точность определения углов пеленга в несколько угловых минут - результат, недостижимый для триангуляционных систем [14].

Таким образом, применение способа и мобильного автоматизированного комплекса на базе ТГА-5/10 для обнаружения, предотвращения и тушения торфяных пожаров, позволяет принципиально по-новому решить проблемы пожарной и экологической безопасности торфяников, а также добычи и хранения торфа [8].