Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

VITAMIN A AND ITS ROLE IN THE HUMAN BODY

Shamitova E.N. 1 Serebryakova A.A. 1 Zhukova A.A. 1
1 Federal State Budget Educational Institution of Higher Education "Chuvash State University n.a. I. N. Ulyanov»
The article is devoted to the study of vitamin A, its structure, structure and biochemical properties. Particular attention is paid to carotenoids that are able in the human body under the action of enzymes to turn into vitamin A (they are called provitamin A), and chemical processes that occur with the participation of these provitamins. In addition, it is established that this vitamin is very sensitive to light and heat, under the influence of which it can turn into ethers and esters. The work also describes the chemical processes that occur in the small intestine of a person during the digestion of vitamin A. The article also discusses the biological role of vitamin A in the human body, especially its function in maintaining normal vision and the condition of the skin, hair and teeth. The process of the effect of vitamin on the eyeball is described in more detail, the reasons for the formation of the disease of night blindness are also described. The article contains information on the presence in nature of vitamin A, listed products containing this chemical compound. The symptoms of hypo-and hypervitaminosis A in the human body, as well as ways to prevent the development of diseases, were also considered.
carotenoids
retinol
palmitate
esters
hypovitaminosis

Витамин А

Физико-химические свойства и структура

Каротиноиды и каротины

Каротиноиды относятся к особой группе углеводородных соединений, которые выполняют функцию синтеза пигмента высшими растениями, грибами, бактериями. По своему строению их классифицируют на собственно каротиноиды, гидроксилсодержащие каротиноиды, каротиноиды, содержащие карбонильные группы и т.п. К собственно каротиноидам можно подобрать синоним «каротины». Каротиноиды других групп, которые содержат в своей молекуле кислород, являются своим образом производными каротинов. Каротиноиды и каротины обладают способностью образовывать структурных и пространственных изомеры.

Показателем биологической ценности каротиноидов является их способность превращаться в организме в витамин А. Такие каротиноиды называют провитамином А. Примерами таких провитаминов структурные изомеры каротина – альфа, бета и гамма каротины.

Самым распространенным структурным изомером является бета-каротин. Его молекула состоит из двух бета -иононовых колец, соединенных алифатической цепью, имеющей 9 ненасыщенных двойных связей. По одной такой связи находится в каждом иононовом кольце. Альфа-каротин при таком же строении алифанической цепи содержит лишь один бета-иононовый цикл, тогда как второй цикл заменен на альфа-иононовый. Гамма-каротин содержит 12ненасыщенных двойных связей, один бета-иононовый цикл и на другом конце молекулы раскрытое кольцо [1].

Активность различных провитаминов отличается из-за наличия структурных и пространственных изомеров. Наиболее выраженной провитаминной активностью обладает транс-форма любого изомера. Среди отдельных структурных изомеров наиболее активен бета-каротин, активность которого принимают за 100%. По сравнению с бета-каротином активность альфа - и гамма-каротинов и криптоксантина составляет соответственно 53, 27 и 57%. Также активность цис-изомеров несколько меньше из-за того, что молекула каротиноида в результате транс-изомеризации теряет свою первоначальную структуру. Это затрудняет действие ферментной системы или систем, участвующих в превращении данного каротиноида в витамин А.

Витамин А и его производные

В 1931г были установлены химические свойства и структурная формула витамина А. Кроме того, было установлено, что он представляет собой ненасыщенный спирт с эмпирической формулой С20 Н30 О, с пятью двойными связями - одной в бета-иононовым кольце и четырьмя в боковой алифатической цепи. В 1937г были получены кристаллические препараты витамина А. Витамин А- это циклический непредельный одноатомный спирт, растворимый в большинстве органических растворителей. Он чувствителен к воздействию света и нагреванию, образует простые и сложные эфиры, большинство которых более стабильны, чем сам витамин А.

В процессе окисления в организме витамин А-спирт (ретинол) превращается в витамин А-альдегид (ретиналь). Помимо этого, к природным производным витамина А относятся также  3-дегидро-витамин А, или витамин А2, и некоторые стереоизомеры этих витаминов. По-видимому, природным соединением витамина А можно считать также витамин А-кислоту (ретиноевая кислота).

Всасывание витамина А

Всасывание витамина А представляет собой сложный процесс, в котором происходит ряд этапов преврящения: эмульгирование и гидролиз его эфиров в просвете желудочно-кишечного тракта, адсорбцию ретинола всасывающей каемкой и транспорт его в клетки слизистой оболочки, реэстерификацию ретинола в них и последующее поступление витамина А в печень в конце. Всасывание витамина А происходит главным образом в верхнем отделе тонкого кишечника.

Витамин А в нормальных условиях всасывается почти полностью.

При приеме пищи с высоким содержанием жира улучшается и ускоряется процесс всасывания ретинола.  Благодаря этому желчь благоприятно действует на всасывание витамина А. Это убедительно было показано на крысах с фистулой желчного протока, у которых отсутствие желчи резко снижало всасывание витамина А в кишечнике.

Главным этапом в усвоении витамина является его эмульгирование. Эмульгирование ретинола-  это самый важный этап в процессе всасывания его в желудочно-кишечном тракте.

В пище витамин А содержится преимущественно в виде эфиров. В связи с этим вместе с пищей в организм поступают главным образом эфиры витамина А, в большинстве случаев в виде пальмитата.

Гидролиз эфиров витамина А в кишечнике происходит при участии ферментов поджелудочной железы и эпителиальных клеток слизистой оболочки тонкого кишечника.

Во всасывании витамина А огромную роль играют желчные кислоты. Они участвуют в эмульгировании, гидролитическом расщеплении эфиров ретинола, солюбилизации продуктов гидролиза и транспорте их к клеткам кишечного эпителия. Возможен тот факт, что они принимают небольшое участие и в реэстерификации ретинола внутри эпителиальных клеток слизистой оболочки. Это, предположительно, связано с ролью желчных кислот в препятствовании окислению витамина А и его эфиров, а также каротина в кишечнике.

При всасывании в кишечнике происходит полный гидролиз этих эфиров и в эпителиоциты слизистой оболочки поступает свободный ретинол.

Следующий этап в обмене витамина А – это реэстерификация ретинола в эпителиоцитах с образованием преимущественно его высших эфиров, главным образом ретинолпальмитата.

После всасывания витамин попадает в печень и другие органы в основном через грудной лимфатический проток. Из этого следует, что обнаружение витамина А в грудном лимфатическом протоке преимущественно в виде его высших эфиров после А-витаминизации может говорить о том, что местом реэстерификации ретинола являются кишечные эпителиоциты [2].

Необходимо учитывать, что кишечные эпителиоциты выполняют еще одну важную функцию в процессе усвоения природных форм витамина А: в них малоактивные цис-формы витамина А, содержащиеся в некоторых пищевых продуктах, преобразуются в высокоактивные трансформы.

Таким образом, в эпителиальных клетках слизистой оболочки тонкого кишечника происходит реэстерификация ретинола, который образуется в результате гидролиза алиментарных эфирных форм витамина А с участием ретинилэфиргидролаз поджелудочной железы, а также и кишечника. Эти ресинтезированные эфиры ретинола (не все) присоединяются к специфическим минопротеинам и попадают в печень через лимфатические сосуды в составе хиломикронов. Нужно учитывать и то, что некоторые количество принятого ретинола и его эфиров всасывается также через воротную вену. В печени происходит высвобождение ретинилэфиров и гидролиз последних с образованием свободного ретинола. В дальнейшем свободный ретинол в печени вторично реэстерифицируется и превращается в ретинилпальмитат, связываясь протеинами печени и образуя запасную форму витамина А.

Всасывание витамина А также зависит от многоих факторов: состав пищи, соотношение в ней белков, жиров и углеводов, усвояемость пищи и наличие в ней окисляющих и восстанавливающих агентов, состояние ЖКТ , особенно печени, поджелудочной железы и тонкого кишечника, количество самого витамина А и характер связи его эфира, гормональный статус и физиологическое состояние организма. В зависимости от факторов ретинол может либо полностью сосаться, либо выделиться в составе продуктов жизнедеятельности.

К примеру, было установлено, что присутствие в пище витамина Е и нормальная секреция желчных кислот предохраняют ретинол от окислительных превращений, что будет способствовать более полному всасыванию его в кишечнике. А при употреблении пищи с содержанием большого количества нитратов происходит разрушение витамина А и нарушение его всасывания. А прием жирной пищи, достаточная секреция желчи и ферментов поджелудочной железой и кишечником способствуют более полному всасыванию ретинола. Витамин А в виде эмульгированных и водно-дисперстных препаратов всасывается быстрее и полнее, чем в виде масляных растворов.

Как отмечалось уже ранее, на всасывание витамина также влияет белковая пища. Белковая недостаточность также приводит к неполному усвоению этого соединения [3].

 Основная масса всасываемого каротина уже в пределах кишечных эпителиоцитов превращается в витамин А, который затем метаболизирует подобно ретинолу, поступившему извне. Центральное место в метаболических превращениях витамина А вообще и в процессе его всасывания в кишечнике в частности занимает ретиналь, являющийся промежуточным продуктом в реакциях превращения бета -каротина в витамин А и окисления ретинола в ретиноевую кислоту.

Транспорт и распределение витамина А

После всасывания большая часть витамина поступает в печень, во многих случаях, в виде ретинолпальмитата. При необходимости запасы эфиров витамина А в печени гидролизуются с образованием ретинола, который, соединяясь со специфическим ретинол связывающим белком, транспортируется к различным органам и тканям.

В крови более 90% витамина А содержится в виде ретинола.

Специфическим переносчиком витамина А в крови является так называемый ретинол связывающий белок, осуществляющий свою транспортную функцию в тесном взаимодействии с тироксинсвязывающей преальбуминовой фракцией. Затем было неоднократно подтверждено, что витамин А связывается ретинол связывающим белком с относительно низкой молекулярной массой, который затем вступает в комплекс с белком значительно большей молекулярной массы -тироксинсвязывающим преальбумином и транспортируется в виде сложного комплекса: ретинол+ретинолсвязывающий белок+тироксинсвязывающий преальбумин.

Связывание витамина А ретинол связывающим белком имеет большое значение: происходит не только солюбилизация нерастворимого в воде ретинола и доставка его из депо печени к тканям и органам, но и предохранение нестабильной свободной формы молекулы ретинола от химического распада. Ретинол связывающий белок выполняет защитную функцию, предохраняя организм от поступления слишком большого количества витамина А и его токсического и разршающего действия на мембраны клеток. Интоксикация витамином А развивается в большинстве случае из-за того, что ретинол в плазме и мембранах находится не в комплексе с ретинол связывающим белком, а в другой форме [4].

Ретинол связывающий белок синтезируется печенью. Этот процесс осуществляется на рибосомах.

Некоторое количество витамина А локализуется также в тонком кишечнике, крови, сердце, легких, сетчатке и роговице глаза, селезенке, щитовидной железе, надпочечниках, поджелудочной железе, эпидермисе и сальных железах кожи, почечной лоханке, слизистой оболочке мочевого пузыря, семенниках и сперматозоидах.

Содержание витамина А в органах и тканях зависит еще от пола и возраста человека. Кроме того, это зависит и от дозы, характера растворителя (жировая или водная эмульсия витамина А) и пути введения (перорально или парентерально) витамина А.

Депонирование витамина А в печени осуществляется только при достаточном поступлении его с пищей и при нормальной концентрации ретинола в крови.

Витамин также можно обнаружить и в мембранах клеток и органелл. Так, витамин А и каротиноиды встречаются в мембранах эритроцитов, клеток слизистой оболочки кишечника и органелл клеток печени. Витамин А, локализуясь в мембранах, по-видимому, играет определенную роль в регуляции их структуры и функций.

Таким образом, транспорт витамина А в крови осуществляет сложный белковый комплекс, который состоит из ретинол связывающего белка - непосредственного носителя ретинола и тироксинсвязывающего преальбумина, который, соединяясь с ретинол связывающим белком, предохраняет последний от клубочковой фильтрации и экскрекции с мочой. Связывание витамина А с указанными протеинами играет важную роль в плане солюбилизации нерастворимого в воде ретинола, предохранения его от быстрого химического распада и элиминации с мочой, а также в плане доставки ретинола из депо в органы-мишени и передачи его в специфические рецепторные молекулы клеток, что необходимо для проявления специфических обменных функций витамина А в этих органах и тканях. Концентрация транспортирующих витамин А белков в плазме крови в нормальных условиях коррелирует с обеспеченностью организма витамином. Возможность подобной корреляции в определенной степени связана с тем, что витамин А является одним из регуляторов обмена собственных транспортных белков.

Осуществление функций белков, которые участвуют в транспорте витамина А, в большинстве случаев зависит от пищи с содержанием белка.

В норме содержание витамина А в крови поддерживается постоянном уровне без значительных колебаний. После полного истощения запасов витамина в печени наблюдается снижение ретинола. Даже при небольшом резерве в печени витамина А, как правило, не наблюдается снижения уровня ретинола в крови.

Учитывая постоянство концентрации витамина А в крови, довольно четко поддерживаемое в нормальных условиях различными регуляторными механизмами, включающими ретинолтранспортирующие белки, можно полагать, что именно при нормальном содержании витамина А в крови оптимально обеспечивается потребность в ретиноле различных органов и тканей. Следует, однако, отметить, что потребность различных органов может обеспечиваться при разных концентрациях витамина А в крови. Например, органы зрения могут эффективно аккумулировать необходимое количество ретинола и при низком содержании его в крови по сравнению с другими органами. Это связано со спецификой ретинол связывающих рецепторов клеток и с различием функций витамина А в различных органах и тканях [5].

Их всего вышесказанного следует, что транспорт витамина А в организме в большинстве случаев осуществляется преимущественно специфическим белковым комплексом, состоящим из ретинол связывающего белка и тироксинсвязывающего преальбумина. Секреция транспортных протеинов из печени регулируется при участии витамина А. Основным запасающим депо витамина А является печень. Оттуда ретинол поступает в кровь через комплекс Гольджи, что обеспечивает метаболическую потребность органов и тканей. Нехватка белка нарушает биосинтез в печени ретинол связывающего белка и тироксинсвязывающего преальбумина, приводит к снижению их уровня в крови. Дефицит транспортных белков для витамина А, развивающийся при белковой недостаточности, нарушает мобилизацию ретинола из депо и транспорт его к органам-мишеням. В этой связи при белковой недостаточности нарушается утилизация даже имеющихся запасов ретинола и развивается так называемый белководефицитный функциональный гиповитаминоз А. Профилактика и лечение его должны проводится при обязательной коррекции белкового состава рациона [5].

Биологическая роль

Витамин А влияет на барьерную функцию кожи, слизистых оболочек, проницаемость клеточных мембран и биосинтез их компонентов. Действие витамина А в этих случаях связывают с его причастностью к синтезу белка.

В настоящее время более подробно выяснено значение витамина А в процессе фоторецепции.

Сетчатка глаз большинства позвоночных содержит две фоторецепторные системы: палочковый аппарат, который чувствителен к низкой интенсивности света (сумеречное зрение) и колбочковый – он приспособлен к высокой интенсивности освещения (цветное зрение). Фоточувствительные пигменты (родопсин) являются хромопротеидами, состоящими из хромофорной группы – витамина - А-альдегида (ретиналь) и белка - опсина. А фоторецепторные системы колбочек (йодопсин и цианопсин) состоят из тех же хромофорных групп, соединенных с белком, отличным по своему строению от опсина. Под действием света родопсин расщепляется на белок опсин и ретиналь. Ретиналь превращается в транс-форму. С этими превращениями связана трансформация энергии световых лучей в зрительное возбуждение. В темноте происходит обратный процесс - синтез родопсина, требующий наличия активной формы альдегида - 11-цис-ретиналя, способного синтезироваться из цис-ретинола или транс-ретиналя, или транс-формы витамина А при участии специфических дегидрогеназы и изомеразы.

Под действием кванта света родопсин через ряд промежуточных продуктов распадается на опсин и алло-транс-ретиналь, которые представляют собой неактивную форму альдегида витамина А. Алло-транс-ретиналь в свою очередь может частично превращаться в активный 11-цис-ретиналь под действием света. Однако, главным путем образования 11-цис-ретиналя- это ферментативное превращение транс-формы витамина А в цис-форму (под действием изомеразы) и последующее окисление ее при участии алкогольдегидрогеназы.

Кроме того, витамин А укрепляет волосы и улучшает состояние кожи, ногтей. Активно участвует в росте костей, в нормальном функционировании щитовидной железы, защищает клетки, являясь одним из мощнейших антиоксидантов, и предотвращает появление раковых клеток.

Распространение в природе и суточная потребность

Витамин А встречается только в продуктах животного происхождения, в большинсве случаев в эфирной форме (в виде пальмитата).

Наиболее богаты этим витамином такие продукты, как: печень крупного рогатого скота, свиней, яичный желток, молоко, сметана, сливки. Особенно богаты витамином А печень и жир некоторых видов рыб (палтус, треска, морской окунь) и морского зверя (киты, тюлени).

Также основным источником каротина являются продукты растительного происхождения - овощи, ягоды (морковь, красный перец, томаты, зелень петрушки, салат, шпинат, абрикосы, облепиха, шиповник, яблоки, виноград, арбуз и др.). Особенно рекомендуется принимать продукты красного цвета. Однако при употреблении, содержащих каротин, следует учитывать то, что их биологическая активность с учетом усвояемости каротина примерно в 6 раз меньше, чем биологическая активность витамина А.

Суточная потребность в витамине А для взрослого человека составляет примерно 1,0 мг, для беременных и кормящих женщин от 1,25 до 1,5 мг, а для детей и подростков от 0,4 до 1,0 мг.

Недостаток витамина А

Симптомы со стороны органов зрения

Основным симптомом нехватки витамина А является нарушение состояния глаз человека. При этом происходит нарушение функций сетчатки, ухудшение состояния конъюнктивы и роговиццы глаза.

При недостаточности этого витамина возникает куриная слепота, или гемералопия, что связано с нарушением сумеречного зрения. Это лишает человека способности ориентироваться в пространстве с наступлением сумерек.

При более длительной недостаточности витамина начинают проявляться нарушения конъюнктивы и роговицы.

Нарушение зрения в сумерках связано с нехваткой и уменьшением поступления в палочки витамин А-альдегида.

Позднее начинаются морфологические изменеия состояния глаза. Причиной этого является кератинизация эпителия конъюнктивы, роговицы. Также нарушение зрения связывают с нарушением или прекращением секреции слезных желез. Все это приводит к возникновению такого заболевания, как ксероз.

У детей и взрослых чаще всего изменения глазного яблока ограничиваются ксерозом. Однако у детей грудного возраста изменение глаза может распространяться и на роговицу. Сначала понижается чувствительность роговицы, а затем она мутнеет. После может развиться кератомаляция, способная переходить в стадию инфильтрации, размягчения, а также прободения. Прогрессирующая кератомаляция в конечном итоге может привести к частичной или полной потере зрения.

Влияние гиповитаминоза на другие органы

При гиповитаминозе А возникают изменения кожи, например, фолликулярный гиперкератоз. Сначала кожа человека становится сухим и шероховатым. Это, в свою очередь, связано с усиленным ороговением поверхностного эпителия и подавлением деятельности потовых и сальных желез. Затем появляется папулезная сыпь. Чаще всего эта сыпь возникает на наружных и боковых поверхностях бедер, задних и боковых поверхностях предплечий, распространяясь далее по остальным частям туловища.

Кроме того, известно еще много симптомов, связанных с недостатком витамина А. У человека могут возникнуть проблемы с ростом организма, потеря массы тела, общее истощение организма, ухудшение настроения, потеря аппетита, бессонница, появление угрей.

Диагностика А-Витаминной недостаточности

Большое внимание следует уделять своему рациону питания, необходимо следить, чтобы в организм поступала пища с оптимальным содержанием белков, жиров и углеводов. Также рекомендуется следить за содержанием витамина в своем организме.  По современным представлениям, содержание витамина А в 100мл крови в количестве менее 10 мгк свидетельствует о недостаточном, 10-19 мкг - о низком, 20-50 мкг - о приемлемом и свыше 50 мкг - о высоком содержании его в крови.

Борьба с недостаточностью витамина А

Как уже отмечалось ранее, недостаток витамина А сопровождается проявлениями тяжелых заболеваний. Поэтому программа профилактики должна быть направлена на увеличение содержания в организме этого витамина или на борьбу с потерей зрения.

Цель деятельности будет зависеть от множества факторов, таких как серьезность проблемы, наличие персонала, а также технических и финансовых ресурсов.

Существует несколько способов, предотвращающих появление авитаминоза А. К таким способам можно отнести, например, применение витамина как отдельный препарат, включение в рацион питания продуктов с высоким содержанием витамина А. Также необходимо проводить мероприятия, связанные с вопросами правильного и сбалансированного питания, осуществлять пропаганду пользы витаминов, стимулировать культивирования и использования в пищу сельскохозяйственных растений, богатых каротином, улучшать аспекты первичной медико-санитарной помощи, связанных с состоянием питания.

Самым лучшим способом является комплексный подход, который сочетает в себе краткосрочные и долгосрочные программы.  Они обычно взаимно усиливают друг друга. Например, проверка состояния здоровья пациента дает возможность установить непосредственный с ним контакт и проводить санитарно-просветительную работу.

Гипервитаминоз витамина А.

Зачастую люди, пытаясь улучшить зрение, употребляют слишком много витамина А. Это приводит к увеличению содержания витамина в организме (гипервитаминоз) и, соответственно. К ухудшению состояния всего организма. Передозировка в острой форме имеет специфическую симптоматику: тошнота, рвота, расстройство функции ЖКТ, боли в суставах, частые головные боли. Кроме того, хроническая форма может сопровождаться облысением, ухудшением зрения, пигментацией кожи, утолщением костей конечностей.