Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

GEODETIC WORKS AT DESIGNING AN OIL AND GAS PIPELINE

Nurtdinov A.F. 1
1 Bashkir State Agrarian University
Тhis article GEODESIC works are executed when the development of oil and gas pipeline, namely in Khanty-Mansi Autonomous Okrug, at the site of the oil industry. The pipeline route and engineering-geodetic surveys must meet the requirements for design. Were alternately GEODESIC works: preparatory. field and cameral stages. Preparatory work begins with receipt of the job before shooting under field conditions, in compliance with safety regulations on capital construction object. In complex preparatory work includes collecting and processing materials from previous years, reconnaissance survey. On the geodetic works were conducted in the coordinate system of the MSK-86 and the Baltic system of heights. Field phase includes the creation and rationale for geodetic network, as well as creating a topographic basis. This article describes what software systems carried out processing of satellite observations, as well as shooting the electronic total-station and what made trassopoiskovyj Kit. Phase two involves processing of fieldwork and implemented using program complex machining engineering activities in compliance with the requirements «of symbols for topographic plans scale m 1:5000–1:500» and requirements of a classifier and table structures in a coordinate system WCS-86.
engineering and geodesic works
design and survey works
geodetic networks
surveying
satellite surveillance
tracing linear structures
topographical plan

При проектировании нефтегазового трубопровода выполняются геодезические работы: съёмка местности, составление профиля, разведка геологических и гидрологических условий по трассе. На примере рассмотрено обустройство Северо-Варьеганского месторождения Нижневартовского района Ханты-Мансийского автономного округа – Югра Тюменской области.

Трассой является линия, которой определяется ось проектируемого линейного нефтегазопровода. В плане, трасса – прямолинейна, а в продольном профиле с допустимым уклоном. В зависимости от назначения, трасса должна удовлетворять требованиям, которые устанавливаются техническими условиями на её проектирование [3].

Инженерно-геодезические изыскания по объекту, выполнялись в три этапа.

Первый этап – период подготовительных работ, который берет начало с момента получения задания и заканчивается выходом в поле для производства съемки. Право на проектно-изыскательские работы, предоставляется свидетельством о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства [2].

В комплекс подготовительных инженерно-геодезических изысканий входит несколько видов работ, которые включают в себя:

– сбор и обработку материалов инженерных изысканий прошлых лет (топографо-геодезических, картографических, аэрофотосъемочных и других материалов и данных). На данный район имеются картографические материалы М 1:100000, 1:50000, используемые для составления ситуационного плана и определения местоположения участка изысканий;

– рекогносцировочное обследование, маршрутные наблюдения по территории изысканий.

Все геодезические работы на данном объекте выполнены в системе координат – МСК-86 и Балтийской системе высот.

Следующим этапом работ является полевой, который подразумевает создание и обоснование геодезической сети, а также создание топографической основы. Рекогносцировка объекта и обследование пунктов геодезической основы выполнялись одновременно [2].

В качестве исходных данных для создания опорной геодезической сети используются пункты планово-высотного обоснования, которые закреплены маркшейдерской службой на Северо-Варьеганском месторождении. Для производства топографо-геодезических работ выполнено создание опорной геодезической сети. Также установлены и определены 8 пунктов с использованием электронных тахеометров Topcon GPT-3105N и комплекта GPS-приемников TOPCON HiPer+ (рисунок).

nur.tiff

Схема опорной геодезической сети

Съемка опорных пунктов проводилась в статическом режиме, в течение 60 минут на каждом пункте. Средние погрешности в определении координат пунктов (точек) съемочной геодезической сети относительно пунктов опорной геодезической сети не превышали для съемки М 1:500 – 0,10 м, для съемки М 1:2000 – 0,35 м [5].

Предварительно были составлены временные графики возвышения и прохождения спутников на территории участка работ, а также выявлены факторы понижения точности DOP-а, влияющие в течение дня на качество съемки. В связи с чем, прогнозировалось время, оптимальное для спутниковых наблюдений.

Обработка спутниковых наблюдений проводилась с помощью программного комплекса Topcon Tools. Сначала проводилось свободное уравнивание в системе WGS-84 с оценкой точности, затем калибровка района работ с трансформацией из WGS-84 в принятую систему координат МСК-86. Опорные точки сети сгущения располагались на открытых участках, для обеспечения наилучшего прохождения спутниковых радиосигналов [1].

Точки опорной геодезической сети закреплялись на местности, согласно требованиям ВСН 30–81 (расположены, по возможности, в местах, безопасных от повреждений).

Съемка выполнялась электронным тахеометрами Topcon GPT-3105N, непосредственно с пунктов съемочного обоснования, с последующей обработкой результатов измерений в программе CREDO_DAT. Топографическая съемка объектов была выполнена:

• в масштабе 1:2000, с сечением рельефа через 1 м на всем протяжении линейных объектов;

• в масштабе 1:500, с сечением рельефа через 0,5 м для площадных объектов, а также в местах отмыкания и примыкания трасс, пересечения с автодорогами, водными преградами, коридорами коммуникаций. Положение съемочных пикетов определялось с помощью электронного тахеометра «полярным» методом [5].

Разбивка и закрепление углов площадок, и углов поворота трасс выполнена с пунктов планово-высотного обоснования. Закрепительные знаки расположены, в местах безопасных от повреждений и замаркированы масляной краской.

При пересечении трассы существующих коммуникаций, определялись глубина залегания, материал труб, диаметр. При пересечении линий электропередач выполнялась съемка пролетов, определялись отметки проводов и земли у опор и в точке пересечения с трассами замерены температуры воздуха, и выполнены эскизы опор, с указанием этих данных на чертежах.

Съемка подземных коммуникаций производилась при помощи трассопоискового комплекта фирмы «Radiodetection RD 8000 PDL», а также по выходам трубопроводов на поверхность, по следам траншей или другим признакам. Предельные расхождения между значениями глубины заложения подземных коммуникаций во время съемки и по данным контрольных полевых измерений не превышают 15% глубины заложения. Съемка воздушных сетей производилась инструментальным методом.

По всей протяженности трассы выполнены топографические съемки масштабов 1:2000, с сечением рельефа 1,0 м. Съемка масштаба 1:500, с сечение рельефа 0,5м, а так же съемки перехода через автодороги, водотоки и в местах пересечения с коммуникациями. Данная топографическая съемка проведена с пунктов специально созданного съемочного обоснования, которая проложена с максимальным приближением к оси проектируемого трубопровода.

При этом полевое трассирование линейных сооружений включают следующие виды работ:

– вынесение проекта трассы в натуру;

– определение углов поворота;

– закрепление трассы;

– привязку трассы к пунктам геодезической основы;

– обработку полевых материалов.

Для восстановления прохождения трассы при строительстве начало, конец и вершины углов трассы закреплялись двумя выносными знаками. В качестве закрепительных знаков использовались деревянные столбики высотой от 0,6 до 1,2 м, диаметром 15–20 см. На закрепительных знаках выполнена маркировка масляной краской с указанием наименования знака по установленному ВСН-81 образцу. Схемы и каталоги этих закрепительных знаков в установленном порядке переданы представителю Заказчика.

После окончания полевых работ, на основании материалов топографической съемки, выполнено камеральное трассирование трубопроводов (низконапорный водовод и автомобильная дорога) по планам масштабов 1:500 – 1:2000.

На проектируемые трассы составлены следующие ведомости:

– углов поворота трасс;

– подземных сооружений, пересекаемых трассами ННВ;

– пересечения надземных коммуникаций);

– пересечения автомобильных дорог трассами;

– угодий по трассам (пикетная);

– пересекаемых лесных угодий ННВ;

– пересекаемых водных преград ННВ.

По результатам выполненных работ по изыскиваемым трассам составлялись продольные профили в масштабах:

– Горизонтальный 1:2000; 1:500;

– Вертикальный 1:100; 1:100;

– Геологический 1:100; 1:100.

Продольные профили построены с применением программного комплекса Geo.Series. Все проектные трубопроводы нанесены на материалы топографической съемки масштабов 1:500–1:2000.

Заключительным этапом инженерно-геодезических работ на данном объекте являлся камеральный этап, который включает в себя обработку результатов полевых работ: расчет координат и высот точек планово-высотного обоснования; составление каталога координат и высот точек планово-высотного обоснования; составление топографических планов; составление технического отчета.

Камеральные работы выполнялись с использованием программного комплекса обработки инженерных изысканий, цифрового моделирования местности (ЦММ) в программном комплексе «CREDO» окончательная корректировка топографических планов выполнена в программах AutoCAD и MapInfo и с соблюдением требований «Условных знаков для топографических планов масштабов М 1:5000–1:500» и требованиями классификатора и структур таблиц MapInfo в системе координат МСК-86.

Продольные профили трасс проектируемых линейных сооружений составлены в масштабах: горизонтальном 1:2000, вертикальном 1:100 и геологическом 1:100, продольные профили переходов представлены в масштабах: горизонтальном 1:500, вертикальном 1:100 и геологическом 1:100 в программе Geo.Series [4].

Результатом геодезических работ на рассматриваемом объекте служит определение планового и высотного положения проекта нефтегазопровода. Использование электронного тахеометра и комплекта GPS оборудования для этих целей значительно облегчает процесс обеспечения необходимой информацией на данном этапе работ.