Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

POSSIBLE MECHANISMS OF THE ACTION OF IONS 3D METALS ON THE DIFFERENTIATION OF CANCER CELLS AND IMMUNITY

Gizatullin M.K. 1 Saptarova L.M. 1 Knyazeva O.A. 1
1 FBOU VO BGMU Minzdrava Rossii
The possible mechanisms of the influence of 3d-metal ions on the differentiation of cancer cells on the example of stem cells isolated from adipose tissue and the immune system are considered in the article. It is believed that the metal ions, hitting the cell, participate in reactions that entail changes in biological structures. After passing through the bilipid layer and interacting with the ligand, they are directed to the nucleus and, when the geometric complementarity coincides, interact with the DNA. Proceeding from the assumption that the mechanism of action on the cell for all metals is similar, it is assumed that 3d-metal ions act by analogy with the mechanism of action of platinum and lead ions. So, in their interaction with immune cells, mainly with CD4 + T-lymphocyte.
ions of metals
cancer cells
immunity

В последние годы опухолевые заболевания стали настоящим «бичом», поскольку наблюдается постоянная тенденция к росту смертности от раковых заболеваний. Имеющиеся противоопухолевые препараты в той или иной мере оказывают подавляющее действие на иммунитет, что снижает эффективность процесса лечения. Поэтому поиск химических веществ, обладающих как противоопухолевой активностью, так и иммунотропными свойствами, является чрезвычайно актуальной задачей медико-биологических наук.

Соединения 3d-металлов (двухвалентных металлов Mn, Fe, Co, Cu и Zn) с глюконовой кислотой наряду с иммунокорригирующими свойствами обладают противоопухолевой и цитотоксической активностью [1,2,3]. Однако механизмы их действия на опухолевую клетку пока не раскрыты.

Цель данной работы: рассмотреть механизмы влияния ионов 3d-металлов на дифференциацию стволовых клеток, как возможных предшественников опухолевых, и иммунную систему.

Существует несколько теорий, касающихся клеток-родоначальников опухолей.

Основные из них:

  • Стохастическая теория утверждает, что любая клетка данной опухоли может при метастазировании, трансплантации или переносе в условиях in vitro стать родоначальницей новой опухоли.
  • Иерархическая теория утверждает, что такими свойствами обладает лишь небольшая часть клеток опухоли, так называемые раковые стволовые клетки. Согласно иерархической теории, в пределах опухоли сосуществуют несколько типов клеток с разными свойствами, и в этом смысле она устроена подобно нормальным тканям, где в большинстве случаев регенерация, рост и восстановление паренхимы происходят путем ассиметричного деления резидентных или циркулирующих стволовых клеток и дифференцировки части дочерних клеток [7].

Обе теории допускают возможность возникновения опухоли из одной единственной клетки-прародительницы, т.е. клональность опухолей.

В литературе [4] описаны возможные механизмы действия ионов металлов на иммунитет: 1 – через специфические рецепторы, которые могут быть локализованы на цитоплазматической мембране, например, CD3 – к ионам Zn; рецепторы к ионам кальция и магния; через мембранные каналы и транспортеры (например, переносчики Zn, Fe, калиевые каналы); через рецепторы, локализованные на внутриклеточных компартментах, например, на митохондрии (Zn, Fe, Se); 2 – путем влияния на активность ферментов, например, многие ионы мететаллов являются компонентами каталитического центра ферментов (митохондриальная Mn-супероксиддисмутаза иммуноцитов; Zn-фингерные белки, регулирующиеуровень транскрипции других внутриклеточных белков). Также металлы воздействуют на активность ферментов путем конкурентного ингибирования или аллостерической активации (Zn-конкурентный ингибитор Са, Mg- зависимая эндонуклеаза); 3 – через влияние на активность, депонирование и стабилизацию гормонов; 4 – через влияние на белки- переносчики (например, альбумин, трансферрин, церулоплазмин); 5 – путем воздействия на презентацию, внутриклеточный процессинг и деградацию антигенов;

6 – продукцию иммуноглобулинов (Zn, Be); 7 – на процессы хемотаксиса, адгезии, фагоцитоза и др.

Всасывание металлов в желудочно-кишечном тракте происходит с различной интенсивностью, может значительно возрастать в присутствии фосфатидных жирных кислот, в комплексе с которыми металлы проникают в лимфу. Метаболический контроль за всасыванием 3d-металлов осуществляется путем изменения их валентности и взаимодействия с лигандами [5].

Проникновение ионов 3d-металлов в клетку на примере Na+ и K+

Основу клеточной оболочки составляет биологическая мембрана, представляющая собой двойной слой липидов, пронизанная местами ионофорными каналами. Простейшие молекулы липидов представляют собой длинный алкильный радикал (алкановый «хвост») и фосфатную группировку («головка») на конце. Катион металла Na+/ K+, попав к стенке клетки, реализует обычно один из двух путей проникновения в клетку. Во-первых, по ионофорной трубке, взаимодействуя с атомами кислорода полиэфирной стенки, катион, как по рельсам, может попасть внутрь клетки.

Если радиус катиона и его природа не позволяют ему проникнуть в отверстие канала, существует другой способ попадания металла в клетку. Молекулы углеводов, а также некоторые лекарственные препараты дают гидрофобные липорастворимые комплексы, которые просачиваются сквозь мембрану клетки. В настоящее время практически для всех металлов Периодической системы известны такие прочные гидрофобные липорастворимые комплексы. В частности, например, так проникает внутрь клетки диметил ртути. Эта молекула неполярна, имеет гидрофобные метильные группы и, благодаря этому просачивается сквозь мембрану.

Какова же судьба металла в клетке? Можно предположить, что ион металла, попав в клетку, останется инертным по отношению к органическим молекулам, составляющим ее основу. Однако от этого предположения приходится сразу отказаться, так как все основные типы биологических молекул, входящие в состав клетки, являются великолепными лигандами для ионов металлов.

По сути дела, для любого металла в клетке обнаруживаются соответствующие ему лиганды. Не будем даже пытаться рассмотреть образующиеся соединения, однако отметим, что в зависимости от природы металла образуются комплексы существенно различной прочности.

Дальнейшая судьба ионов металлов в клетке

Допустим, что механизм действия на клетку у всех металлов сходен, то если рассмотреть платину как один из переходных металлов, можно предположить, что 3d-металлы будут оказывать аналогичное влияние.

Известно, что одним из факторов риска появления злокачественных опухолей является генетическая предрасположенность. Поэтому следует рассмотреть влияние металла на нуклеиновые кислоты – в первую очередь ДНК.

После прохождения билипидного слоя и образования лиганда, ион металла направляется к ядру и, при полном совпадении геометрической комплементарности, взамодействует с ДНК.

Известны соединения платины, являющиеся эффективными противораковыми препаратами [7]. Все они относятся к плоскоквадратным цис-изомерам. Очень интересно, что аналогичные соединения с транс-конфигурацией терапевтическим действием не обладают, что указывает на существование жесткой геометрической комплементарности между структурой платинового препарата и структурой, реагирующей с ним биологической молекулы.

Сходный механизм можно наблюдать при взаимодействии ионов свинца с иммунными клетками [6]. Ядерный фактор kВ (NF-kB) является представителем группы структурно подобных и эволюционно стабильных белков у млекопитающих типа Rel (c-Rel), Rel A (р65), Rel В, NF-kB1 (р50 и его предшественник р105) и NF-kB2 (р52 и его предшественник р100). Они играют основную роль в запуске и координации молекулярных механизмов приобретенных и врожденных иммунных реакций на уровне транскрипции. Свинец в физиологических концентрациях активирует NF-kB, главным образом, в СD4+Тлимфоцитах. Антитела к субъединицам р65 и р50 (белкам фактора транскрипции, отвечающим за механизм иммунного ответа и апоптоза) блокируют индуцируемую свинцом активацию NF-kB, но не cRel, указывая на то, что в этом процессе участвует гетеродимер р65:р50 (NF-kB). Функциональную активацию свинцом экспрессии генов не наблюдали в отношении генов, кодирующих NF-kB в четырех различных линиях Т-клеток, с предварительной генетической модификацией соответствующих участков ДНК [6].