Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

ANTIOXIDANT AND IMMUNOMODULATING PROPERTIES OF GLUCONATE OF COBALT (II) AS POSSIBLE MECHANISM OF ITS ANTI-TUMOR ACTION

Gareeva A.I. 1 Kireeva E.A 1 Knyazeva O.A. 1
1 Bashkir state medical university
The experiment was performed on 48 individuals of 2.5-3-month-old white laboratory mice weighing 25-30 g, in 36 of which inducible immunodeficiency was induced by single intraperitoneal administration of cyclophosphamide (50 mg / kg). The influence of Co (II) gluconate on the antioxidant system and key molecules of humoral immunity (IgG and IgG-C1q) in the liver and blood of immunosuppressed mice was assessed. It was shown that after two-week therapy with cobalt (II) gluconate, the processes of lipid peroxidation were slowed down in animals, the activity of key antioxidant enzymes (glutathione peroxidase and glutathione transferase) increased, or, on the contrary, decreased (superoxide dismutase). The introduction of cobalt (II) gluconate also led to a change in key indicators of humoral immunity: an increase in IgG concentration by 25%, and complexes of C1q-IgG – by 18.5%. The obtained results testify to the antioxidant and immunomodulating properties of cobalt (II) gluconate, which can be considered as one of the mechanisms of its antitumor effect.
mice
immunodeficiency
cyclophosphamide
cobalt gluconate
lipid peroxidation
antioxidant enzymes
IgG
IgG-C1q.

Кобальт (Co) является почти повсеместным микроэлементом в царствах животных и растений и играет важную роль в поддержании биологической функции в качестве компонента витамина B12 и других кобаламинов [9]. Производные данного витамина являются коферментами ряда жизненно важных ферментов – рибонуклеозидтрифосфатредуктазы, метилтрансферазы, метилмалонил-СоА-мутазы, а также некоторых пирофосфатаз, пептидаз и аргиназы. Есть сведения о том, что кобальт может влиять на активность ферментов, в частности, аденилатциклазы и ряда других, а также на ферменты метаболизма гема [7]. Однако введение чрезмерного количества Со и его ионов (II) оказывает вредное воздействие на организм человека, вызывая окислительный стресс, снижение восстановленного глутатиона, активацию гексозомонофосфатного шунта и повреждение ДНК в результате чего происходит дисфункция и гибель клеток [9]. В то же время имеются доказательства, что органические соединения кобальта оказывают благоприятное влияние на иммунитет, повышая фагоцитарную активность лейкоцитов [6]. Есть данные о том, что чувствительность к кобальту у людей может регулироваться Т-лимфоцитами и кобальт может непосредственно взаимодействовать с белками иммунной системы, такими как иммуноглобулины и Fc-рецепторы. В опытах in vitro показано, что ионы кобальта (II) снижают пролиферацию В- и Т-лимфоцитов, способствуют высвобождению цитокинов IL-2, IL-6 и IFN-гамма, активируют плацебоподобный рецептор 4 (TLR4), который обычно реагирует на действие бактериального липополисахарида (TLR4 LPS). Показано, что при индуцировании воспаления происходит активация TLR4 LPS, экспрессия хемокинов CXCL10, IL-8 в макрофагах, которые привлекают лейкоциты и активированные Т-клетки [3,9]. Также в литературе имеются данные о том, что комплексные соединения кобальта обладают отчетливыми антипролиферативными свойствами, ингибируя пролиферацию Т- и В-клеток селезенки in vitro [5].

Однако молекулярные механизмы такого разнообразного действия кобальта до конца не раскрыты и требуют дальнейших углубленных исследований, что является актуальным.

Материалы и методы

Эксперимент проводили на 48 особях 2,5-3-месячных белых лабораторных мышей массой 25-30 г, у 36-ти из которых индуцировали иммунодефицит путем однократного внутрибрюшинного введения циклофосфамида (50 мг/кг) [2,3]. Влияние глюконата Co (II), синтезированного в Институте биоорганической химии УНЦ РАН, изучали в сравнении с двумя группами мышей, которым вводили иммуностимулирующий препарат «Ликопид» (0,17 мг/кг) и глюконат кальция (50 мг/кг). Контролем, относительно которого оценивали результаты, служила группа иммунодефицитных мышей «без лечения», им вводилась дистиллированная вода. Эта группа сравнивалась с группой «контроль-интактные».

Пероральное введение всех препаратов начиналось через 24 часа после инъекции циклофосфана и далее ежедневно в течение 14 дней в дозе 1/10 LD50 [3]. На 15-е сутки животных умерщвляли методом цервикальной дислокации и в гомогенате печени определяли активность ключевых антиоксидантных ферментов: супероксиддисмутазы, каталазы, глутатионпероксидазы (ГПО) и глутатионтрансферазы (ГТ). Интенсивность перекисного окисления липидов (ПОЛ) оценивали по содержанию малонового диальдегида (МДА). В сыворотке крови методом иммуноферментного анализа (ИФА) с помощью тест-наборов определяли уровень IgG и комплексов C1q-IgG [1,2,3]. Статистическую обработку результатов проводили с применением программы «Microsoft Excel». Статистически значимыми принимали значения при р <0,05.

Результаты исследования

Показано (диаграмма 1), что в печени иммуносупрессированных мышей наряду со значительной активацией ПОЛ (увеличение уровня МДА в 5,4 раза), происходило снижение активности антиоксидантных ферментов. Наиболее глубокое снижение активности наблюдалось у ГПО – в 11,2 раза и СОД – в 5,2 раза. Активность каталазы снижалась примерно в 1,8, а ГТ – в 1,7 раз.

ggare1.tif

Диаграмма 1.

Примечание: Интактные – группа здоровых мышей; ИД – группа мышей с иммунодефицитом без лечения; ИД+GlCa – группа иммунодефицитных мышей, которым вводили глюконат кальция; ИД+ликопид – группа иммунодефицитных мышей, которым вводили ликопид; ИД+GlCо – группа иммунодефицитных мышей, которым вводили глюконат кобальта.

ggare2.tif

Диаграмма 2.

Примечание: Показатели группы «Иммунодефицит без лечения» приняты за ноль. По оси абсцисс обозначения групп мышей: 1 – интактные; 2 – группа иммуносупрессированных мышей, которым вводили ликопид; 3 – группа иммуносупрессированных мышей, которым вводили GlCa; 4 – группа иммуносупрессированных мышей, которым вводили глюконат кобальта.

Двухнедельная терапия глюконатом кобальта (II) приводила к следующим эффектам: повышение активности ГПО в 4,4 раза, ГТ – около 2 раз, а также замедление процессов ПОЛ, выражавшееся в уменьшении в 1,4 раза уровня МДА – основного показателя образования радикалов в гепатоцитах. В то же время наблюдалось снижение в 1,9 раза активности СОД. Этот антиоксидантный фермент инактивирует радикал супероксиданион, превращая его в пероксид водорода, который является субстратом для глутатионпероксидазы и каталазы. Значение СОД может снижаться при длительной интоксикации на фоне истощения антиокислительных систем организма, что может привести к последующей генерализованной активации ПОЛ. Угнетение активности СОД может быть также следствием повышенного уровня молекул Н2O2, выделяемых инфекционными агентами [8,9], или компенсаторным явлением, способствующим накоплению радикалов ОНˑи О2-, служащим для повышения защитного потенциала клеток, т.к. при иммуносупрессии в них происходит снижение функциональных резервов. Таким образом, полученные результаты свидетельствуют об антиоксидантных свойствах глюконата кобальта, что подтверждается и литературными данными [7].

Введение глюконата кобальта (II) приводило также к изменению ключевых показателей гуморального иммунитета: к повышению концентрации IgG на 25%, и комплексов C1q-IgG -на 18,5% (диаграмма 2), что указывает на его иммуномодулирующие свойства.

Заключение и выводы

Ранее на мышах BALB/c было показано противоопухолевое действие глюконата кобальта [4]. Поэтому иммуномодулирующие и антиоксидантные свойства глюконата кобальта можно рассматривать, как один из возможных механизмов его противоопухолевого действия.