Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

INFLUENCE OF EPIGENETIC FACTORS ON CHEMORETSEPTORY SYSTEM OF PERCEPTION OF TASTE

Roslyakov G.,E. 1 Dzhumasheva R.T. 1
1 Asfendiyarov Kazakh national medical university
In a constantly changing environment, adequate nutrition is an important factor that determines successful adaptation and the state of human health. The state of taste sensitivity of a person depends on genetic, physiological, metabolic factors. Taste sensations can, change with age, depend on gender, have seasonal dynamics. At the same time, a genetically determined threshold of a person’s taste sensitivity to phenylthiocarbamide (RTS) was detected, which remains constant during ontogeny. “Sensitivity to RTS” is used as a marker of various diseases. Lately, cell-molecular mechanisms of the chemosensory system of perception of taste have been densely studied. At the same time, there is no evidence of the influence of epigenetic factors, including substances contained in dental fillings and toothpastes, on the chemosensory system of the taste analyzer.
perception of taste
chemosensory system
epigenetics

Вкус – одно из наших жизненно необходимых качеств, развившихся в процессе эволюции как защитное качество и является важным фактором, который определяет успешную адаптацию и состояние здоровья человека. Состояние вкусовой чувствительности человека зависит от генетических, физиологических, метаболических факторов. Вкусовые ощущения могут, изменяться с возрастом, зависеть от половой принадлежности, иметь сезонную динамику. Понятие «чувство вкуса» – это мультимодальное ощущение, т.е. сочетание восприятия вкуса и запаха, а также тригеминальных ощущений: это восприятие тактильных ощущений, температуры, плотности, остроты пищи языком, ротовой полостью, а также восприятие носовой полостью тактильных стимулов и действия раздражающих летучих веществ (например, аммиака, кислот). Восприятие вкуса возникает в результате влияния вкусовых раздражителей на вкусовые хеморецептры (вкусовые луковицы или почки), расположенные на поверхности языка и в слизистой оболочке ротовой полости. На спинке языка и его боковых поверхностях располагаются 4 основных вида сосочков: нитевидные, грибовидные, желобоватые и листовидные, конусовидные (papillae conicae) и чечевицевидные сосочки (papillae lentiformes) [3].

Вкусовые ощущения воспринимаются по схеме: Вкусовой сосочек – вкусовая почка – мембрана микроворсинок – рецепторные белки – изменяется состав ионов – возникает рецепторный потенциал – сигнал о раздражении в кору головного мозга – восприятие вкуса.

Восприятие вкуса человеком состоит из различных ощущений: традиционно выделяю 5 вкусов: горький, сладкий, кислый, соленый; в последнее время выделяют: остро-жгучий, жирный и umami (ощущение, вызываемое glutamate), которые важны для питания и выживания. За каждый из 4-х основных видов раздражителей отвечают определенные зоны языка. Сладкое воспринимают рецепторы кончика языка, кислое – его боковые зоны, горькое – корень языка, соленое – кончик языка и его боковые поверхности.

К настоящему времени идентифицированы порядка 30 относительно специализированных рецепторов горького (семейства Т2R), один универсальный рецептор сладкого (Т1R2/T1R3) и один рецептор аминокислот (Т1R/T1R3). Несколько ионных каналов рассматриваются как рецепторы соленых (ионный канал ENaC) и кислых стимулов (ионный канал PKD2L1) [4]. Рецепторы сладкого и горького принципиально отличаются от ионных каналов, которые отвечают за кислое и соленое, и относятся к группе рецепторов GPCR (G protein-coupled receptor – G белок-опосредованные рецепторы) (R. Lefkowitz и B. Kobilka, Нобелевская премия, 2012 г.). Так же во вкусовых рецепторных клетках языка имеется альфа-гастдуцин (рецептор – ассоциированная субъединица тримерного G-белкового комплекса) [9], вовлеченный во внутриклеточный сигнальный каскад (активация G-белка а-гастдуцина, активация фосфолипазы Ср2, мобилизация внутриклеточного кальция и активация кальцийзависимого ионного канала TRPM), активирующийся при рецепторном распознавании сладких и горьких компонентов пищи. Генетический нокаут (knock-out) альфа субъединицы G-белка гастдуцина (а-гастдуцин) приводит к снижению или даже полному подавлению чувствительности генетически модифицированных животных к горькому, сладкому и умами вкусам. Таким образом, альфа-гастдуцин может служить маркером рецепторных клеток периферического отдела вкусовой сенсорной системы, формирующей ощущение сладкого и горького вкуса [8,9]. Как установлено рядом исследователей, сенсорная функция сосочков так же обеспечивается нейрофиламентарным протеином (NFP) и протеином S-100 – кальцийсвязывающий белок [5, 6].

«На вкус может повлиять все что угодно – от хирургической операции на ухе до дефицита витаминов и солей». Часто причиной нарушения вкусовых ощущений являются генетические, гормональные и метаболические заболевания. Изменение вкусовых ощущений проявляется от полной «вкусовой слепоты» (агевзия) до «вкусового дальтонизма» (дисгевзия). Причинами подобных дисфункций хемосенсорной системы могут быть: болезни десен; зубные протезы и пломбы; фтор в зубной пасте; недостаток в пище витаминов В12, А, РР и солей цинка, меди [5].

Восприятие вкуса, как и все функции нашего организма, генетически детерминировано. Генетические исследования вкусовых ощущений за последние десятилетия значительно расширились и углубились. Так, известны гены, программирующие синтез рецепторов для восприятия вкусов: горького (гены hTAS2R38 –всего около 30) и сладкого вкуса (гены T1R2-T1R3), соленого – (под вопросом вариации гена горького TAS2R38 и гена тяги к соленому GABRA2, так как конкретный белок, который выступает в качестве рецептора соленого вкуса, до сих пор не найден), кислого- (PKD2L1), умами (белковый вкус) – (гены T1R1-T1R3), жирного – (варианты гена CD36), остро-жгучий вкус (ген TRP). В настоящее время выявлены особенности влияния порядка 17 генов на вкусовое восприятие некоторых продуктов, таких как кофе и шоколад, артишоки и бекон, йогурт и сыр, и некоторые другие виды пищи [5].

Наиболее полно на сегодняшний день изучена вкусовая чувствительность человека к пропилтиоурацилу (PROP) и фенилтиокарбамиду (PTC). Среди множества межиндивудуальных различий вкусовых ощущений человека, определяемых генетическими факторами, только вкусовая чувствительность к PTC наследуется по законам Менделя как аутосомно-доминантный признак. Особенность восприятия PTC, открытая в 1932 году A.L. Fox [11], позволяет разделять людей на индивидов: «тестеров», которые исключительно чувствительные к его вкусу и он воспринимается ими как очень горький и «нетестеров, которые совершенно нечувствительны к нему и он воспринимается ими как безвкусный. Показано, что способность ощущать вкус PTC является генетически обусловленным признаком, который ранжируется наравне с цветом глаз и группами крови [10].

В конце XX века были открыты гены, кодирующие вкусовые рецепторы горечи у человека, которые обнаруживают 25-89% идентичных аминокислотных последовательностей между 25 различными членами этого семейства генов, их обозначили как T2R или Tas2R. Ген вкусовой чувствительности к PTC расположен на 7 хромосоме – 7q34 (маркер rs1726866). Аллели гена T2R кодируют, в большинстве популяций, две разновидности G – протеина, формирующего вкусовую чувствительность к PTC. Протеин тестеров обозначается как PAV (пролин, аланин и валин), протеин нетестеров обозначается как AVI (аланин, валин, изолейцин). Аллели, кодирующие эти белки, получили название PAV и AVI. Они определяют бимодальное распределение порогов чувствительности к ФТК и классическую модель рецессивного наследования. Чувствительность к горькому вкусу у обладателей гаплотипа PAV в сто раз и более превосходит чувствительность людей, имеющих гаплотип AVI. Между этими крайними вариантами вкусовой чувствительности располагаются, различающиеся между собой обладатели гаплотипов PVI, AAI и AAV [6].

Однако, в последние годы медицинская наука все чаще переключает свое внимание с изучения генетического кода на таинственные механизмы, при помощи которых ДНК реализовывает свой потенциал: упаковывается и взаимодействует с протеинами наших клеток. Оказалось, что недостаточно, чтобы в ваших генах была закодирована правильная последовательность нуклеотидов. Говоря словами других исследователей: «Мы – нечто большее, чем просто сумма наших генов» (lar, 1998); или: «Вы можете наследовать нечто помимо нуклеотидных последовательностей ДНК. Вот где сейчас действительно волнующая проблема в генетике» (Watson, 2003). Т.е. необходимо, чтобы гены могли полноценно реализоваться (экспрессия, выражение генов).

Под экспрессивностью понимают степень фенотипической выраженности генов, т. е. «силу» действия генов, проявляющуюся в степени развития контролируемых ими признаков (Н.В. Тимофеевы-Ресовский). На экспресивность генов может влиять ряд факторов: образ жизни, вредные привычки, факторы окружающей среды. Экспрессивность генов не является постоянным свойством наследственности, ибо она очень вариабельна у растений, животных и у человека. Например, у людей проявляется по-разному такой признак, как способность ощущать вкус фенилтиокарбамида (PTC). Население различных районов мира значительно отличается по способности ощущения PTC. Наименьшая частота ощущения свойственна коренному населению Австралии, низкая и средняя – населению стран Европы, Средиземноморья, Южной Азии, высокая частота характерна для населения Восточной, Юго-Восточной Азии и Океании, наиболее высокая наблюдалась в Африке и у американских индейцев («тестеры»). По другим данным к «нечувствительным» относят около 30% европеоидов, 3% негроидов. По-видимому, это связано с расовыми различиями населения [5,6].

Экспрессия генов осуществляется через посредство морфогенетической системы, на которую оказывают также влияние изменяющиеся факторы среды, Уоддингтон назвал изучение этих взаимодействий эпигенетикой. По определению выдающегося английского биолога, Нобелевского лауреата П. Медавара: «Генетика предполагает, а эпигенетика располагает». Молекулярная основа эпигенетики достаточно сложна при том, что она не затрагивает первичную структуру ДНК, а изменяет активность определенных генов [12].

Наиболее изученным аспектом эпигенетики является метилирование ДНК. Это процесс присоединения метильных (СН3-) групп (одного атома углерода и трех атомов водорода) к цитозиновым основаниям ДНК. Обычно метилирование влияет на транскрипцию генов – копирование ДНК на РНК (первый шаг в репликации ДНК), т.е функция метилирования заключается в активации или инактивации гена. Показано, что даже незначительные изменения в степени метилирования ДНК могут существенно изменять уровень экспрессии генов.

Исследование профиля метилирования может использоваться и в диагностике – для раннего определения различных заболеваний. Анализ литературных данных показал, что нарушение метилирования ДНК, в результате которого изменяется вкусовая чувствительность к PTC, не ограничивается вопросами физиологии вкусового анализатора, а используется в качестве генетического маркера предрасположенности к различным заболеваниям. Показано, что метилирование ДНК и модификации гистонов участвуют в синаптической пластичности, формировании памяти, неврологических расстройствах: болезнь Альцгеймера, Паркинсона, эпилепсия, шизофрения, острый и хронический стресс, инсульт ревматоидный артрит, эутиреоидный зоб и сахарный диабет [10] .

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с пищевым рационом, эмоциональным статусом, мозговой деятельностью, образом жизни и другими внешними факторами. Наряду с перечисленными факторами, на метилирование ДНК могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции. Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд. Среди таких веществ следует выделить те, которые могут содержаться в стоматологическом пломбировочном материале, протезах и зубных пастах (свинец, бисфенол А, фтор). Они способны «уничтожать» свободные метильные группы, необходимые для метилирования, и подавлять ферменты, прикрепляющие эти группы к ДНК, а так же влиять на процессы трансляции и транскрипции [1,2,7].

Протеин S-100, который обеспечивает сенсорную функция сосочков, демонстрируют выраженную тканеспецифичную и клеточноспецифичную экспрессию, принимает участие в ответе генов раннего реагирования, в реализации генетических программ апоптоза и антиапоптозной защиты, при этом проявляет себя при патологиях, далеких от стоматологии и используются как маркер некоторых заболеваний (единственный чувствительный серологический маркер меланомы, болезни сердечно-сосудистой системы, ЧМТ и др.).

Заключение

Мы можем высказать предположение, что изменение вкусовой чувствительности связано с нарушением метилирования ДНК генов, кодирующих рецепторные протеины, обеспечивающие сенсорную функцию вкусовых сосочков в результате действия веществ, содержащихся в пломбировочном материале и зубных пастах,

Таким образом, косвенно, на уровне предположений, можно провести параллель между эпигеномными болезнями, связанными с нарушением метилирования ДНК, генетическим маркером «сенситивность к PTC», протеином S-100 и нарушением вкуса. Т.е. различные дисфункции хемосенсорной системы восприятия вкуса, возможно расценивать в качестве маркера негативных последствий нарушения обмена веществ для эпигенетического окружения ДНК.

В настоящее время разрабатывается эпигенетическая терапия, направленная на лечение этих заболеваний посредством воздействия на эпигеном и коррекции нарушений. В связи с этим, использование достижений эпигенетики весьма перспективны в будущем для лечения и профилактики болезней зубов.