Электромагнитные волны — это поперечные волны (волны сдвига), в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приемнику [2].
Источниками электромагнитных излучений радиочастот (ЭМИ РЧ) и сверхвысоких частот (СВЧ) являются технические средства и изделия, которые предназначены для применения в различных сферах человеческой деятельности и в основе которых используются физические свойства этих излучений.
Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения других источников, потому что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения, которая обусловлена цикличностью работы радиолокатора на излучение. У метеорологических радиолокаторов с временной прерывистостью 30 мин - излучение, 30 мин - пауза, суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно [4].
Метеорологические радары могут создавать плотность потока энергии (ППЭ) ~ 100 Вт/м2 на удалении 1 км за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика не превышающую 10 Вт/м2.
Теле- и радиостанции. Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС) [3].
Зону возможного неблагоприятного действия ЭМИ, создаваемых ПРЦ, можно условно разделить на две части. Первая часть зоны – это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Вторая часть зоны – это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны.
Основными элементами системы сотовой связи являются базовые станции (БС), которые поддерживают радиосвязь с мобильными радиотелефонами (МРТ). Базовые станции БС и МРТ являются источниками электромагнитного излучения в УВЧ-диапазоне. БС поддерживают связь с находящимися в их зоне действия мобильными радиотелефонами и работают в режиме приема и передачи сигнала. В зависимости от стандарта, БС излучают электромагнитную энергию в диапазоне частот от 463 до 1880 МГц [1].
Антенны БС устанавливаются на высоте 15–100 метров от поверхности земли на уже существующих постройках (общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий) или на специально сооруженных мачтах. К выбору места размещения антенн БС с точки зрения санитарно-гигиенического надзора не предъявляется никаких иных требований, кроме соответствия интенсивности электромагнитного излучения значениям предельно допустимых уровней, установленных действующими Санитарными правилами и нормами СанПиН 2.2.4/2.1.8.055-96 «Электромагнитные излучения радиочастотного диапазона» [1].
Мобильный радиотелефон представляет собой малогабаритный приемопередатчик. В зависимости от стандарта телефона, передача ведется в диапазоне частот 453 – 1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени, зависящей от состояния канала связи «мобильный радиотелефон – базовая станция», т. е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125–1 Вт, однако в реальной обстановке она обычно не превышает 0,05 – 0,2 Вт [1].
Персональный компьютер (ПК). Основными составляющими частями ПК являются: системный блок и разнообразные устройства ввода/вывода информации: клавиатура, дисковые накопители, принтер, сканер и т. п. Каждый ПК включает средство визуального отображения информации – дисплей. ПК часто оснащают сетевыми фильтрами, источниками бесперебойного питания и другим вспомогательным электрооборудованием. Все эти элементы при работе ПК формируют сложную электромагнитную обстановку на рабочем месте пользователя (см. таблицу 1) [3].
Табл.1. Частотные характеристики электромагнитного излучения ПК
Источник |
Диапазон частот |
Монитор сетевой трансформатор блока питания |
50 Гц |
Статический преобразователь напряжения в импульсном блоке питания |
20 - 100 кГц |
Блок кадровой развертки и синхронизации |
48 - 160 Гц |
Блок строчной развертки и синхронизации |
15 - 110 кГц |
Ускоряющее анодное напряжение монитора (только для мониторов с ЭЛТ) |
0 Гц (электростатика) |
Системный блок (процессор) |
50 Гц - 1000 МГц |
Устройства ввода/вывода информации |
0 Гц, 50 Гц |
Источники бесперебойного питания |
50 Гц, 20 - 100 кГц |
Бытовые приборы. Из бытовых приборов наиболее мощными следует признать СВЧ-печи, различного рода грили, холодильник, оснащенный системой
"No frost", кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМИ в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа. Все нижеприведенные данные относятся к магнитному полю промышленной частоты 50 Гц. Согласно современным представлениям, оно может быть опасным для здоровья человека, если происходит продолжительное облучение (регулярно, не менее 8 часов в сутки, в течение нескольких лет) с уровнем выше 0,2 мкТл. (Табл. 2) [4].
Табл.2. Распространение магнитного поля промышленной частоты
от бытовых электрических приборов (выше уровня 0,2 мкТл).
Источник |
Расстояние, на котором фиксируется величина больше 0,2 мкТл |
Холодильник, оснащенный системой |
1,2 м от дверцы; 1,4 м от задней стенки |
Холодильник обычный (во время работы компрессора) |
0,1 м от электродвигателя компрессора |
Утюг (режим нагрева) |
0,25 м от ручки |
Телевизор 14" |
1,1 м от экрана; 1,2 м от боковой стенки |
Электрорадиатор |
0,3 м |
Торшер с двумя лампами по 75 Вт |
0,03 м (от провода) |
Электродуховка |
0,4 м от передней стенки |
Аэрогриль |
1,4 м от боковой стенки |
Цель работы: изучить электромагнитную обстановку на территории г.Перми.
Материалы и методы. Объектом исследования являлись передающие радиотехнические объекты (ПРТО) связи, вещания и радионавигации, мобильные средства связи, объекты энергетики. На 2015 год их количество составило 4062 объекта ПРТО. Исследования проводили на основе данных Государственного доклада «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации» за 2014-2015 годы.
Методики исследования. Измерение электромагнитных излучений проводится при помощи приборов П3-31 Измеритель электромагнитных излучений, измеритель П3-41 с расширенным выводом информации, Narda SRM-3000 - Селективный измеритель уровней излучения электромагнитных полей. Измеритель мощности излучения.
За 2015 год проведено 47610 измерений, из них: базовые станции сотовой связи – 46501; радиотелепередающие центры – 638; радиолокационные станции – 0; земные станции спутниковой связи – 12; прочие источники ЭМИ (радиорелейные передатчики, узлы связи) – 459.
Нормативные документы на основе которых проводилось сравнение результатов являются СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи», СанПиН 2.1.8/2.2.4.1383-03 «Гигиенические требования к размещению и эксплуатации передающих радиотехнических объектов», СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях».
Определение уровня электромагнитного поля от источников проводится в соответствии с МУК 4.3.1677-03 «Определение уровней электромагнитного поля, создаваемого излучающими техническими средствами телевидения, ЧМ радиовещания и базовых станций сухопутной подвижной радиосвязи».
Результаты. Число источников ЭМИ, воздействующих на население, увеличивается в последние годы весьма динамично в основном за счет наиболее интенсивно развивающихся телекоммуникационных систем. Это различные ПРТО связи, вещания и радионавигации, мобильные средства связи, объекты энергетики.
В 2015 году продолжился рост числа установленных ПРТО, в основном за счет увеличения числа БС сотовой связи, что обусловлено развитием систем мобильной связи в связи с продолжение работ по внедрению систем коммуникаций 3-го и 4-го поколений (3G, 4G). Всего общее число объектов надзора в 2015 году составило 4062, в 2014 г. на 170 объектов больше (увеличилось на 4,4%). Наибольшее количество базовых станций размещено на территории крупных городов Пермского края: г. Перми, Березники, Соликамска, Чайковского [5].
По результатам внеплановых проверок объектов, а также в ходе рассмотрения обращений по вопросам размещения ПРТО, в 2014 году вынесено 11 постановлений о наложении штрафов, выдано 13 предписаний об устранении выявленных нарушений. Основные нарушения: размещение ПРТО при отсутствии санитарно-эпидемиологических заключений о соответствии санитарным правилам, ввод в эксплуатацию ПРТО без согласования с Управлением.
За период 2015 года Управлением выдано 1134 санитарно-эпидемиологических заключений на проекты размещения ПРТО, что на 1,7% больше по сравнению с 2014 г. В 2015 году Управлением рассмотрено 1091 документов на ввод в эксплуатацию ПРТО, что на 43,9% больше по сравнению с 2014 г., при этом количество отклоненных от согласования материалов на ввод в эксплуатацию ПРТО составляет 11% от общего числа рассмотренной документации [5].
Электромагнитная карта г. Перми. В 2013г. Федеральным бюджетным учреждением науки «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» совместно с Управлением Роспотребнадзора по Пермскому краю разработан атлас электромагнитной обстановки города Перми. Атлас представляет собой динамическую трехмерную карту распространения электромагнитных полей в г. Перми в сопряжении с тематической пространственной информацией о местах постоянного проживания и временного пребывания населения. В ходе разработки атласа электромагнитной обстановки города Перми проведена инвентаризация основных источников ЭМП, расположенных на территории города, с определением их характеристик, расчет уровней ЭМП на всей территории города на 22 разных высотах от 2 до 75 метров над уровнем земли, критериальная оценка полученных результатов и зонирование территории города Перми по уровням ЭМП.
В качестве основы для выполнения оценки существующего уровня ЭМП был использован специализированный программный продукт «ПК АЭМО 4.0». Расчеты проводились в городской системе координат в более чем 109 тысячах точек. Инвентаризация источников излучения на территории города Перми показала, что внешнесредовую нагрузку формируют 2-11 источников телекоммуникационной деятельности и оборудования, которые являются причиной насыщения окружающей среды электромагнитной энергией в различных частотных диапазонах. Сформирована база данных об источниках ЭМИ, в которую включены: 1666 базовых станций сотовой связи, которые расположены равномерно по всей территории города Перми; 248 единиц радиорелейных линий связи; 95 антенн трех передающих радиостанций (башня ФГУП «РТРС» филиал «ПКРТПЦ» г. Пермь, ул. Техническая, 7; башня ЗАО ТРК «Авторадио-ТВ», башня ОАО «Ростелеком»); 2 трассовых обзорных радиолокатора на территории аэропорта «Большое Савино». По результатам расчетов получена трехмерная карта электромагнитного загрязнения города Перми в виде карт-схем расчетных уровней ЭМП на различных высотах. (Рис.1-3)
Рис. 1 Уровень ЭМП в г. Перми на высоте 3 метров
Рис. 2 Уровень ЭМП в г. Перми на высоте 12 метров.
Рис. 3 Уровень ЭМП в г. Перми на высоте 30 метров.
По результатам расчетов выделена зона (0,8 км²) с превышением предельно допустимого уровня (1,52ПДУ), которая расположена на технической территории аэропорта «Большое Савино», находящейся за пределами жилой застройки. В настоящее время в зоне с ненормативным уровнем ЭМП отсутствует жилая застройка. Порядка 80% всех расчетных точек характеризовались параметрами ЭМП в диапазоне 0,1-1 мкВт/см². Максимальные значения находились в диапазоне 0,4-0,55ПДУ и были установлены на высотах 4-7 этажей в разных зонах города Перми. Определено, что с увеличением высоты уровни ЭМП в целом по городу возрастают, достигая максимума на уровнях 9-18 метров, затем постепенно снижаются, однако продолжают оставаться более высокими, чем в приземном слое. Так, площадь территории с уровнем ЭМП 1-10 мкВт/см² на высоте 3 метра (первые этажи зданий) составляет 5,86 км², на высоте 12 метров (2-4 этажи зданий) – 20,9 км², на высоте 30 метров (9-11 этажи зданий) – 13,6 км², на высоте 48 метров – 14,5 км². В зонах, характеризующихся с плотностью потока энергии от 1 до 10 мкВт/см², расположено 1000 домов, в которых на текущий момент проживает 145 тысяч человек.
На основании выполненных расчетов были обоснованы точки инструментальных измерений для программ социально-гигиенического мониторинга, поставлены задачи по оценке риска для здоровья населения, длительное время проживающего в зонах наибольшего электромагнитного загрязнения. Материалы расчетов рассматриваются как основа для обоснования размещения БС сотовой связи и иных ПРТО, предусмотренных Генеральным планом города и программой его социально-экономического развития.
Заключение. В результате проведенных исследований было выявлено, что зона с превышением предельно допустимого уровня (1,52ПДУ) располагается на технической территории аэропорта «Большое Савино» (0,8 км²) и находится за пределами жилой застройки. В настоящее время в зоне с ненормативным уровнем ЭМП отсутствует жилая застройка. Порядка 80% всех расчетных точек характеризовались параметрами ЭМП в диапазоне 0,1-1 мкВт/см². Таким образом, для улучшения и сохранения на должном уровне электромагнитной обстановке на территории г. Перми необходимо разрабатывать мероприятия по профилактике влияния электромагнитного излучения на организм человека.