Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

INVESTIGATION OF THE NUMERICAL SOLUTION OF EQUATIONS IN THE INFORMATIONAL EDUCATIONAL ENVIRONMENT

Sadkov K.O. 1 Chasov K.V. 1
1 Armavir Institute of Mechanics and Technology
In the article it is noted the need to study methods and methods of numerical solution of equations, both algebraic and transcendental by students (future engineers) directions of electric power engineering and electrical engineering. Their knowledge, skills and skills will be applied within the scope of their official duties. Therefore, it is so important for learners to study this problem. In the «higher mathematics» and «special mathematics» disciplines, students are asked to prepare interactive training documents on the topic for the purpose of posting these documents in the information educational environment. Students in the use of mathematical tools are not limited, mostly applied mathematical editor MathCAD. The above is a novelty of work, because Numerical methods for solving the equations have been thoroughly worked out and known. The visibility of the presentation of the training material, its interactivity, the obviousness and comprehensibility of the result are the most important result of the study.
Mathematical editor MathCAD
interactive training document
numerical methods for solving equations

По поводу вопроса о численном решении уравнений и их систем глобальная сеть Интернет, а именно Википедия, утверждает, что оно «состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок» ([5]). Необходимость в численном решении уравнений может возникнуть у будущих инженеров электроэнергетиков и электротехников во время выполнения ими служебных обязанностей, поэтому так важно обучающимся знать методы решения подобных уравнений и систем, а также возможности их решения в математических средах, к примеру, MathCAD. Сузим вопрос до численного решения уравнений, точнее, нахождение корней заданной непрерывной на некотором интервале функции.

Численные методы решения уравнений (алгебраических, трансцендентных) достаточно глубоко проработаны и известны. Укажем наиболее простые и употребительные с точки зрения изучения их в высшей школе: метод Ньютона (метод касательных), метод хорд, комбинированный метод, метод итераций. Практически все эти методы используют принцип сжимающих отображений (Теорема Банаха), знать который обязаны все студенты энергетики.

В настоящей статье рассмотрим итерационный метод, который также использует принцип сжимающих отображений.

Нашей задачей мы считаем включение указанных методов вычисления корней уравнений в информационную образовательную среду (ИОС) кафедры в виде интерактивного обучающего документа ([1], [2]). Решения примеров, включаемых в документ, известны и стандартны, но методический подход к изучению методов и способов решения, включаемых в электронный документ носит элемент новизны.

В интерактивный обучающий документ помещается теория и примеры решения задач. Так, например, в документе обязательно будет пояснение проблемы нахождения корней функции.

Решая уравнение вида

f(x) = 0,

где f(x) определена и непрерывна на некотором конечном или бесконечном интервале a lt; x lt; b, мы практически решаем следующие задачи:

1) отделение корней, т.е. отыскание достаточно малых областей, в каждой из которых заключен только один корень уравнения (так называемый изолированный корень);

2) вычисление корней с заданной точностью.

Отделение корней будем осуществлять графическим способом. Вычисление же корней будем проводить с помощью указанных выше методов.

Итерационный метод является, по сути, методом последовательных приближений или методом простой итерации. Скорость сходимости метода довольна низка, при этом высока наглядность происходящего процесса поиска корней, поэтому мы так подробно на нём останавливаемся. Тем более что обучающиеся могут самостоятельно подготавливать интерактивный обучающий документ, встраивать новое содержание (новое условие) в документ, добавлять информацию.

В качестве примера рассмотрим следующий фрагмент интерактивного обучающего документа.

Вычислить численными методами корни функции: f(x) = x2 – 3x + 2.

Довольно часто можно встретить решение подобных примеров в виде последовательных рассуждений с достаточно большим количеством повторений – до тех пор, пока не выполнится поставленное в задаче условие окончания вычислений. Наша цель максимально автоматизировать процесс вычисления корней функции с заданной степенью точности. Решение можно выполнить в любой вычислительной среде, например, Excel, MathCAD, Mathematika.

Решим поставленную задачу в математической среде MathCAD методом половинного деления. Обучающиеся под руководством преподавателя составляют в математической среде MathCAD программу (функцию пользователя). Программа даёт полностью автоматизированное вычисление корня для любой заданной непрерывной функции. Но сначала на экран выводится значение корней заданной функции с помощью встроенной в математическую среду процедуры root. Далее для получения грубого приближения корня строится график заданной функции. В примере ниже задана функция, имеющая точные корни в точках 1 и 2 по оси х. По этой причине мы сможем установить насколько точно работает составленная нами программа (функция пользователя).

Вначале задаётся сама функция. Затем строится её график (рисунок).

sad1a.tif

sad1b.tif

График функции в среде MathCAD

Учитывая сказанное выше (задана простая функция), решение максимально понятно, а результат – может быть легко проинтерпретирован. Процедура (или функция) root, заданная с параметрами, и график дают два известных корня функции соответствующих ручным вычислениям. Далее составляем функцию пользователя с учётом точности вычислений и отрезка, на котором ищется корень. Даже при первом взгляде на программу сразу становится заметным насколько просто и очевидно решение. Несколько сложнее будут выглядеть решения для методов Ньютона (метод касательных), хорд, комбинированного метода.

Очевидно, что вычислительный процесс продолжается только с такими значениями концов отрезка, в которых значения функции получаются разных знаков. При желании в данную функцию пользователя легко встроить счётчик проведённых итераций. Понятно, что чем сложнее метод вычисления корней функции, тем быстрее будет найден результат.

f1.wmf

Подошло время опробовать нашу программу.

f2.wmf

Найден только второй из корней. Полученный результат можно проинтерпретировать следующим образом: при заданной точности вычислений количество верных цифр результата соответствует этой точности. Округление как раз и даст требуемый (уже известный нам) результат. При необходимости, задав другие значения для интервала поиска, можем получить и первый корень.

Приведём формулы других методов вычисления корней функции.

1) Метод хорд. Если выполняются соответствующие условия, то левый конец интервала не движется и формула принимает вид:

sad01.wmf

2) Метод касательных. Формула принимает вид:

sad02.wmf

3) Комбинированный метод. Заключается в том, что применяются обе указанные выше формулы, при этом при выполнении соответствующих условий по одной из формул будет вычисляться корень по недостатку, по другой – по избытку.

Для того чтобы применять приведённые выше методы вычисления корней функции, студент должен уверенно ориентироваться в теоретическом материале. Указанная тема одна из самых трудных в численных методах. Поэтому без каких-либо усилий, без самостоятельной работы над учебным материалом данная тема «пройдёт» мимо студента. Как следствие, только подготовка интерактивного обучающего документа по изучению вопроса может помочь студенту освоить численные методы.

Студенты работают с данным интерактивным обучающим документом с большим интересом, т.к. такой сложный вопрос, как поиск корней уравнения, решается так просто, очевидно и понятно, да ещё и с использованием компьютера. Учебный процесс и самоподготовка с подобным интерактивным обучающим документом проходит в активной и интерактивной формах ([4], [3]), мотивирует обучающихся принимать участие в подготовке аналогичных учебных материалов.