Согласно проведенным исследования, статистическая гипотеза – предложение о виде распределения и свойствах случайной величины, которое можно подтвердить или опровергнуть применением статистических методов к данным выборки [2, 9].
Статистические гипотезы различают по виду предложений, содержащихся в них:
- Статистическая гипотеза, однозначно определяющая распределение P, т. е. Hо : {P = P0}, где P0 какой-то конкретный закон, называется простой;
- Статистическая гипотеза, утверждающая принадлежность распределения P к некоторому семейству распределений, то есть вида Hо:{P∈P1}, где P1 – семейство распределений, называется сложной [6, 14].
На практике обычно требуется проверить какую-то конкретную и, как правило, простую гипотезу H0. Такую гипотезу принято называть нулевой [4, 7]. При этом параллельно рассматривается противоречащая ей гипотеза H1, называемая конкурирующей или альтернативной [5, 11].
В большинстве случаев статистические критерии основаны на случайной выборке (X1, X2, … , Xn) фиксированного объема n ≥ 1 для распределения P. В последовательном анализе выборка формируется в ходе самого эксперимента и потому ее размер является случайной величиной [15].
Выделяют три вида критических областей:
- Двусторонняя критическая область определяется двумя интервалами (-∞ ; x α/2) (x1 – α/2; +∞), где xα/2 и x1 – α/2 находят из условий P(φ < xα/2 ) = α/2, P(φ < x1-α/2 ) = 1-α/2;
- Левосторонняя критическая область определяется интервалами (-∞ ; xα), где xα находят из условий P(φ < xα) = α;
- Правосторонняя критическая область определяется интервалом (x1- α ; +∞), где x1- α находят из условия P(φ < x1-α) = 1 – α. [1, 13].
Необходимо проверить с надежностью 0,95 статистическую гипотезу о равенстве средней дебиторской задолженности однотипных предприятий региона значению α₀ = 2 тыс. руб. Для этого была проведена выборочная проверка 15 предприятий региона и их дебиторских задолженностей. Результаты проверки представлены в таблице.
i |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
xi (тыс. руб.) |
1,2 |
0,6 |
1,5 |
0,3 |
0,8 |
1,2 |
2,2 |
1,5 |
2,6 |
5,1 |
0,5 |
1,9 |
1,6 |
8,1 |
3,4 |
Дебиторская задолженность 15-ти предприятий
Здесь обозначена дебиторская задолженность i-го предприятия через хi.
Найдем точечную оценку математического ожидания дебиторской задолженности, как выборочное среднее [8, 12]:
тыс. руб.
Найдем выборочную дисперсию дебиторской задолженности:
(тыс. руб.)2
где , (тыс. руб.)2;
, (тыс. руб.)2 .
Найдем исправленную выборочную дисперсию:
, тыс. руб.
Проверяемая гипотеза H0: = α₀ = 2 тыс. руб. В качестве альтернативной возьмем гипотезу H1: α0 > 2. Так как генеральная дисперсия σ2 неизвестна, то используем t – критерий Стьюдента [3, 10].
Статистика критерия равна
.
Критическое значение статистики
.
Так как , то гипотеза H0 принимается (нет оснований ее отвергнуть). Т.е. на 5 %-ном уровне значимости средняя дебиторская задолженность однотипных предприятий региона равна значению α = 2 тыс. руб.
Отыщем интервальную оценку дебиторской задолженности однотипных предприятий региона по имеющимся выборочным данным с надежностью 0,99.
Таким образом, математическое ожидание дебиторской задолженности однотипных предприятий региона с надежностью 0,99 принадлежит интервалу .
Вывод: По имеющимся выборочным данным о проверке дебиторской задолженности предприятий региона отличие выборочного среднего значения задолженности от значения 2000 рублей является статистически не значимым. По этому полагаем среднее значение задолженности принять равным 2 тыс. руб. С надежностью 0,99 математическое ожидание задолженности предприятий региона находятся в интервале .