Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

1 1 1 Matveeva T.A. 1 1 Svetlichnaya V.B. 1
1

Модели массового обслуживания часто встречаются в нашей повседневной жизни. Мы сталкиваемся с ними буквально повсюду: очереди в ожидании обслуживания в кафе, очереди к кассе в магазине, в банке, парикмахерской, автомойке, на бензозаправочной станции и т. д.

Анализ процессов массового обслуживания даёт нам оценку влияния на режим функционирования системы таких показателей, как частота поступления заявок на обслуживание, время обслуживания поступающих заявок, количество и размещение различных компонентов обслуживающего комплекса и т.д.

Простейшей одноканальной моделью с вероятностными входным потоком и процедурой обслуживания является модель, характеризуемая показательным распределением как длительностей интервалов между поступлениями требований, так и длительностей обслуживания. При этом плотность распределения длительностей интервалов между поступлениями требований имеет вид

resh164.wmf,

где λ – интенсивность поступления заявок в систему (среднее число заявок, поступающих в систему за единицу времени).

Плотность распределения длительностей обслуживания:

resh165.wmf,

где resh166.wmf – интенсивность обслуживания; tоб – среднее время обслуживания одного клиента.

Рассмотрим систему, работающую с отказами. Можно определить абсолютную и относительную пропускную способность системы.

Относительная пропускная способность равна доли обслуженных заявок относительно всех поступающих и вычисляется по формуле:

resh167.wmf.

Эта величина равна вероятности Р0 того, что канал обслуживания свободен.

Абсолютная пропускная способность – среднее число заявок, которое может обслужить система массового обслуживания в единицу времени:

resh168.wmf

Вероятность отказа в обслуживании заявки будет равна вероятности состояния «канал обслуживания занят»:

resh169.wmf

Величина Ротк может быть интерпретирована как средняя доля необслуженных заявок среди всех поданных.

Пусть одноканальная система массового обслуживания (СМО) с отказами представляет собой одно место в очереди к кассе в банке. Заявка – посетитель, прибывший в момент, когда место занято, получает отказ в обслуживании. Интенсивность потока прихода посетителей λ = 3 (чел./ч). Средняя продолжительность обслуживания tоб = 0,6 ч.

Мы будем определять в установившемся режиме следующие предельные значения: относительную пропускную способность q; абсолютную пропускную способность А; вероятность отказа Ротк.

Сравним фактическую пропускную способность системы массового обслуживания с номинальной пропускной способностью, которая была бы, если бы каждый посетитель обслуживался 0,6 часа, и очередь была бы непрерывной.

Вначале определим интенсивность потока обслуживания:

resh170.wmf.

Вычислим относительную пропускную способность:

resh171.wmf

Величина q означает, что в установившемся режиме система будет обслуживать примерно 62,4 % прибывающих человек.

Абсолютную пропускную способность определим по формуле:

resh172.wmf

Это означает, что система способна осуществить в среднем 0,624 обслуживания человек в час.

Вычислим вероятность отказа:

resh173.wmf

Это означает, что около 37,6 % прибывших посетителей на кассу получат отказ в обслуживании.

Определим номинальную пропускную способность системы:

resh174.wmf (чел./ч)

Исходя из данных расчётов, делаем вывод, что Аном в resh175.wmf раза больше, чем фактическая пропускная способность, вычисленная с учётом случайного характера потока заявок и времени обслуживания.

Данная система работает неэффективно. Вероятность отказа слишком большая – 37 человек из 100 уйдут из банка не получив обслуживания. Это недопустимо. В такой ситуации есть несколько решений проблемы:

Добавить ещё один канал обслуживания, т.е. организовать двухканальную систему. Это позволит принять больше заявок, но несёт дополнительные затраты на создание дополнительного канала и на дальнейшее его содержание.

Не добавляя ещё одного канала, уменьшить время на обслуживание одной заявки, например, за счёт автоматизации канала.

Не добавляя ещё одного канала, создать систему без отказов, но с ожиданием в очереди. Этого можно добиться, если установить диваны для ожидания.

Таким образом, можно повысить эффективность работы наиболее приемлемым для банка решением.