Развитие тестирования как метода психолого-педагогической диагностики началось в XIX веке. В настоящее время тестирование интенсивно применяется в педагогических целях, в том числе и для диагностики результатов учебной деятельности студентов вузов [1].
Одной из проблем в развитии тестирования является недостаточная надёжность оценок, получаемых с помощью распространённых моделей тестирования знаний. Решить эту проблему позволяет использование адаптивного тестирования
Адаптивное тестирование (АТ) – разновидность тестирования, при котором порядок предъявления заданий (или трудность заданий) зависит от ответов испытуемого на предыдущие задания. Адаптивное тестирование позволяет повысить эффективность контрольно-оценочных процедур за счет индивидуализации процедуры тестирования, что, в свою очередь, приведет к точности измерения, минимизации числа заданий и времени на контроль.
Для организации адаптивного тестирования необходимо разработать следующие компоненты: цели тестирования, способы построения набора заданий тестирования, методы проведения тестирования, методы проверки результатов тестирования, методы оценивания результатов тестирования, правила окончания тестирования. Особый интерес представляют методы проведения тестирования, классификация которых приведена в работе [2].
На данном этапе проведен анализ исследований в области теории и практики АТ [3-5], который позволяет сделать вывод о том, что способы построения траектории АТ при помощи задания переходов между состояниями (используя Байесовские сети, цепи Маркова, сети Петри, конечные автоматы) достаточно хорошо изучены. В связи с этим была определена цель работы – рассмотреть возможность использования нейросетевых методов для построения траектории АТ.
Процесс тестирования с использованием нейронной сети можно описать следующим образом [6]: На вход подаются 3 параметра: X1 − номер этапа тестирования, X2 − уровень сложности вопроса в тесте, X3 − количество правильных ответов, набранных испытуемым после одного этапа тестирования. Выход нейронной сети – Yi − данные о повышении или понижении уровня сложности вопроса на следующем этапе тестирования испытуемого, где i = 1,N. Где N − количество этапов тестирования.
На начальной фазе тестирования испытуемому предлагается пройти первый этап, вопросы которого отражают фундаментальные знания по дисциплине. Целью данного этапа является выявление уровня подготовленности испытуемого. В процессе тестирования система переводит испытуемого с одного этапа тестирования на другой с учетом его подготовленности, повышая или понижая уровень сложности вопросов в тесте. Процесс завершается попрохождению испытуемым всех запланированных в тестировании этапов, подведением итоговой оценки.
В дальнейшем планируется изучить программное обеспечение, применяемое для моделирования нейронных сетей, что позволит разработать тестирующую систему, использующую нейросетевые методы для построения траектории АТ.