Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

THE ROLE OF LIPID PEROXIDATION PROCESSES AND THEIR ANTIOXIDANT DEFENSES IN THE PATHOGENESIS OF CHRONIC GASTRODUODENITIS IN CHILDREN (SCIENTIFIC REVIEW)

Kirakosyan E.R. 1
1 Chita State Medical Academy, Russian Ministry of Health
In the scientific review the data of the modern literature on the role of lipid peroxidation and antioxidant protection in the development of chronic gastroduodenitis in children. Free radical oxidation - it is self-induced chain oxygen transfer process to a substrate to form peroxides, aldehydes, ketones. Displaying the activation value of free radical oxidation processes in the weakening of antioxidant protection. Lipoperoxidation uncompensated gain can disrupt the structure and function of cell membranes and lead to a pathological process. These processes result in damage to cell membranes and accumulate in the blood oxidized products. This leads to the development of endogenous intoxication. The intensity ratio of free radical oxidation of lipids and antioxidant activity determined by the so-called superoxide cell status. Possible ways of correction are the use of extracorporeal detoxification methods, and the use in treatment of stabilizing cell membranes.
lipid peroxidation
antioxidant protection
children
chronic gastroduodenitis

В основе перекисного окисления липидов (ПОЛ) лежат цепные, разветвляющиеся свободнорадикальные реакции. Свободнорадикальное окисление (СРО) – это цепной самоиндуцирующийся процесс переноса кислорода на субстрат, с образованием перекисей, альдегидов, кетонов [2].

Инициаторами СРО являются активные формы О2. Сам по себе кислород опасности не представляет, но в силу уникальности электронной структуры, его восстановление идет в несколько этапов, с образованием активных и токсических интермедиатов, таких как Н2О2, О', ОН?, НО2, О'?2  [3].

В организме существует два основных пути обмена кислорода. Оксидазный путь связан с окислением энергетических субстратов и реализующийся конечным звеном дыхательной цепи – цитохромоксидазой. При этом кислород присоединяет к себе 4 электрона, в результате такого восстановления образуется вода. В нормальных условиях оксидазный путь не предполагает включение атомов кислорода в молекулу субстрата, сопряжен с ресинтезом АТФ и является главным источником энергии в живых системах.

Оксигеназный путь предполагает включение одного или двух атомов кислорода в молекулу субстрата с помощью оксигеназ. При этом возможно прямое восстановление кислорода одним или двумя электронами с образованием активных форм кислорода (АФК) или активных кислородных метаболитов: супероксидного аниона, пероксида водорода, гидроксильного радикала, синглетного кислорода и др. [1].

АФК являются активными окислителями и способны реагировать с эндогенными субстратами, образующими структуры организма – ДНК, белками, липидами. В результате таких превращений образуются органические гидропероксиды, а совокупность реакций, индуцируемых АФК, носит название оксидативной модификации молекул. Гидропероксиды липидов являются промежуточными продуктами ПОЛ и служат исходным субстратом для разветвления цепей свободнорадикального окисления липидов с образованием токсических конечных продуктов.

Некомпенсированное усиление липопероксидации может нарушить структуру и функцию клеточных мембран и привести к развитию патологического процесса [8]. Так, в экспериментальных условиях показано, что при умеренной активации свободнорадикальных реакций окисления фосфолипидов мембран происходит увеличение «жидкостности» бислоя и, как следствие, увеличение подвижности полипептидных цепей мембраносвязанных белков и повышение их активности. Именно этот эффект имеет адаптивное значение для организма при хроническом гастродуодените (ХГД) у детей поскольку позволяет быстро оптимизировать активность всех мембраносвязанных белков, а следовательно, функцию клеток и органа в целом, тем самым способствовать срочной адаптации организма к действию раздражителя. При прогрессировании свободнорадикального окисления в мембранах растет доля насыщенных фосфолипидов, что приводит к уменьшению жидкостности мембраны и подвижности, связанных с ней белковых структур. Возникает эффект «вмораживания» этих белков в более «жесткую» липидную матрицу и, как следствие, активность белков снижается или полностью блокируется [7]. ХГД является распространенным заболеваним среди детей и подростков, однако не все стороны развития этой патологии изучены достаточно широко [12, 15].

Смещение равновесия в системе «ПОЛ - антиоксиданты» в сторону накопления про- и оксидантов называют окислительным (перекисным) стрессом [5]. Однако, в настоящее время известно участие АФК в регуляции тонуса сосудов, клеточной пролиферации, проницаемости биологических мембран, индукции иммунных реакций и микробицидном действии фагоцитов, регуляции метаболических процессов в качестве мессенджеров [6]. В связи с этим, патологическое состояние возникает при чрезмерном накоплении АФК и интенсификации оксидативной модификации макромолекул. Такое состояние возможно при несоответствии в образовании АФК и гидропероксидов и их дезактивации антиоксидантной системой, представленной веществами неферментативной и ферментативной природы [1]. Соотношение интенсивности свободнорадикального окисления липидов и антиокислительной активности определяют так называемый перекисный статус клетки.

В организме существует два вида регуляции перекисного окисления липидов: ферментативный и неферментативный [10]. К ферментативной системе относятся: супероксиддисмутаза (СОД), глутатионзависимые ферменты, каталаза, пероксидаза. СОД катализирует реакцию дисмутации супероксидного анион-радикала (О2-), предохраняя клетку от наиболее токсического воздействия. Глутатионпероксидаза (ГПО) эффективно утилизирует токсичные липопероксиды, в основе лежит реакция восстановления. Глутатионредуктаза восстанавливает глутатион, необходимый для функционирования ГПО. Глутатионтрансферазы эффективно обезвреживают гидрофобные гидропероксиды с большим объемом молекулы (гидропероксиды линолевой и арахидоновой полиненасыщенных жирных кислот, фосфолипидов), а также гидропероксиды мононуклеотидов и ДНК, участвуя в их репарации. Каталаза ускоряет процесс двухэлектронного восстановления пероксида водорода до воды, используя Н2О2, как донор электрона. В окисленном состоянии каталаза работает как пероксидаза, обеспечивая окисление спиртов и альдегидов [2]. В желудочном соке при ХГД у детей зарегистрировано увеличение концентрации гидроперекисей при сниженной антирадикальной защите [13, 16]. Аналогичные изменения выявлены в слизистой оболочке желудка [14]. Повышение уровня продуктов деградации липидов приводит к характерному для данной патологии синдрому эндогенной интоксикации [18].

При ХГ установлена достоверная корреляция между исходно повышенной липопероксидацией и пониженными показателями иммунитета [4], что свидетельствует о значении активации ПОЛ в развитии иммунологической недостаточности, микроэлементных [11, 20] и ферментных нарушений [19]. Полученные результаты о повышении в крови гидроперекисей подтверждаются мнением других исследователей [9].

Немаловажное значение в изменении метаболизма клетки имеет тот факт, что действие большинства медикаментов осуществляется через изменение физико-химических свойств биомембран. Получены положительные результаты использования вентрамина при ХГД у детей.

Таким образом, при хронических заболеваниях верхнего отдела ЖКТ изменение равновесия в системе «ПОЛ-АОЗ» в сторону накопления интермедиатов свободнорадикальных реакций обусловлено множеством причин и имеет важное патогенетическое значение.