Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

1
1

Математические методы являются важнейшим инструментом анализа экономических явлений и процессов. Они позволяют создавать теоретические модели, а так же отображать существующие в экономической жизни связи, прогнозировать поведение экономических субъектов и экономическую динамику. Математическое моделирование становится языком современной экономической теории, одинаково понятным для учёных всех стран мира.

Рассмотрим типичные задачи с использованием математических методов [1-3]. Предприятие выпускает четыре вида изделий с использованием четырех видов сырья. Нормы расхода сырья даны как элементы матрицы А: 1 2 3 4. Вид сырья

missing image file

Требуется найти затраты сырья каждого вида при заданном плане выпуска каждого вида изделия: соответственно, 60, 50, 35 и 40 ед. Составим вектор-план выпуска продукции: =(60, 50, 35, 40).

missing image file

Тогда решение задачи дается вектором затрат, координаты которого и являются величинами затрат сырья по каждому его виду: этот вектор затрат вычисляется как произведение вектора на матрицу А:

missing image file

missing image file

Рассмотрим типичные задачи, возникающие в ходе хозяйственной деятельности предприятий. Спрогнозируем величину выпуска продукции, исходя из сведений известных о запасах сырья. Фирма выпускает 3 вида продукции. При этом используется 3 типа сырья. Таблица отражает основные параметры технологии производства. Определим объемы продукции, которые возможно выпустить при заложенных данных о запасах сырья. Такого рода вопросы неизбежно возникают при деятельности любого предприятия.

Вид

сырья

Расход сырья по видам

продукции, вес.ед./изд.

Запас

сырья,

вес.ед.

1

2

3

1

2

3

6

4

5

4

3

2

5

1

3

2400

1450

1550

Полученные в ходе решения ответы на поставленные вопросы дадут возможность для прогнозных оценок и заключений, а также для создания планов по микроэкономическим показателям предприятий.

Обозначим неизвестные объемы выпускаемой предприятием продукции через неизвестные величины x1, x2 и x3. Тогда при условии полного расхода запасов для каждого вида сырья можно записать уравнения, отражающие баланс продукции и сырья из которого она сделана. Получаем систему 3 уравнений с 3 неизвестными:

missing image file

Решение систему уравнений приводит к следующим результатам (с учетом заданных значений о сырье):

missing image file

Рассмотрим наиболее общую постановку задачи прогнозирования объемов продукции. Пусть

missing image file

- матрица, отражающая расход сырья Т видов при выпуске продукции. Тогда при известных объемах запаса каждого вида сырья, которые образуют соответствующий векторmissing image file

Вектор missing image file = (х1, х2, ... , xn) характеризует объем выпуска продукции и определяется из решения системы Т уравнений с n неизвестными

missing image file

Здесь индекс Т означает транспонирование вектора-строки в вектор-столбец.

Рассмотрим задачи использование линейной модели торговли. Процесс взаимных закупок товаров анализируется с использованием понятий собственного числа и собственного вектора матрицы. Будем полагать, что бюджеты n стран, которые мы обозначим, соответственно, х1, х2, …, хn, расходуются на покупку товаров. Рассмотрим линейную модель обмена продукцией.

Пусть аij – доля бюджета хj, которую j-я страна тратит на закупку товаров у i-й страны. Введем матрицу коэффициентов аij:

missing image file

Тогда, если весь объем средств расходуется только на закупку сырья извне (это можно рассматривать как торговый бюджет). Тогда справедливо равенство

missing image file

Матрица А с данным свойством, в силу которого сумма элементов ее любого столбца равна единице, называется структурной матрицей торговли. Для i-й страны общая выручка от внутренней и внешней торговли выражается формулой

missing image file

Условие сбалансированной торговли формулируется естественным образом: для каждой страны ее бюджет должен быть не больше выручки от торговли, т.е. missing image file, или

missing image file missing image file

Докажем, что в условиях не может быть знака неравенства. Действительно, сложим все эти неравенства при i от 1 до n. Группируя слагаемые с величинами бюджетов xn, получаем

missing image file

missing image file

Как можно заметить, в скобках стоят суммы элементов матрицы А по ее столбцам, которые равны единице по условию. Таким образом, мы получим неравенство

missing image file

откуда следует, что возможен только знак равенства.

Условия принимают вид равенств:

missing image file

Введем вектор бюджетов missing image file, каждая компонента которого характеризует бюджет соответствующей страны. Тогда систему уравнений можно записать в матричной форме: Ax=x

Это уравнение означает, что собственный вектор структурной матрицы А, отвечающий ее собственному значению 1, состоит из бюджетов стран бездефицитной международной торговли. Перепишем уравнение в виде, позволяющем определить: x: (A-E)x=0

Таким образом, применение методов оптимального решения в деятельности предприятий приводит к экономии материальных средств, экономии времени и улучшению производительности. Кроме того, данные методы могут быть полезны и в задачах экспериментального исследования различного рода процессов [4-15].