В современное время большинство экономико-математических задач направлены на нахождение наилучшего решения в сфере производства. Большой вклад в теорию оптимального распределения ресурсов сделал российский ученый Леонид Витальевич Канторович. В 1938 г. сотрудники Центральной лаборатории Ленинградского фанерного треста попросили Канторовича порекомендовать им численный метод для расчета рационального плана загрузки имеющегося оборудования.
Для решения поставленной задачи он разработал метод линейного программирования (впервые затронут в брошюре «Математические методы организации и планирования производства» 1939 г.).
Независимо от Леонида Витальевича к подобному методу пришел американский ученый голландского происхождения Т. Ч. Купманс.
Рассмотрим решение экономической задачи, аналогичной задаче Канторовича.
Предприятие выпускает пиломатериалы и фанеру. Для их изготовления используются еловые и пихтовые лесоматериалы на единицу продукции. Доход от реализации и запасы сырья даны в таблице.
лесоматериалы |
расход лесоматериалов |
Запасы |
|
пиломатериалы |
фанера |
||
еловые |
1 |
5 |
80 |
пихтовые |
3 |
10 |
180 |
количество |
≥10 |
≥2 |
|
доход |
16 |
60 |
Составим план выпуска пиломатериалов и фанеры, который приносит наибольшую прибыль: Пусть план выпуска х1 – пиломатериалов, x2 – фанеры. Тогда прибыль составит: Z(x)=16 х1 +60 x2 – max.
Ограничения составим по запасам сырья:
Рассмотрим задачу графически (см. рисунок):
Рисунок
D-область решений системы ограничений; ; линии уровня Z(x)=c проходят перпендикулярно вектору и на этих прямых значение прибыли равное. При перемещении линии уровня по направлению вектора значение прибыли увеличивается и наибольшее значение будет в точке М(20;12) – точке пересечения 1-ой и 2-ой прямых.
Итак, прибыль максимальна при производстве 20 м3 пиломатериала и 1200 м3 фанеры.
При рассмотрении двух продуктов метод прост и легко может быть представлен в виде графика. Но он применим и для решения задач более высоких порядков, подразумевающих рассмотрение трех или более продуктов. В этих случаях мы не можем использовать графическое решение, но Канторович разработал алгоритмическое, при помощи которого решения могут быть получены путем последовательного приближения – симплекс-метод. Подобные задачи можно решить симплекс-методом с помощью компьютерных программ.