Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

ИНФОРМАЦИОННАЯ СИСТЕМА АВТОМАТИЗИРОВАННОГО ВОССТАНОВЛЕНИЯ РАСФОКУСИРОВАННЫХ ИЗОБРАЖЕНИЙ НА БАЗЕ ФИЛЬТРА ВИНЕРА

Коротыш Д.В. 1 Строкань О.В. 1
1 Мелитопольский государственный университет имени А.С. Макаренко
Работа посвящена вопросу восстановления смазанных изображений методом слепой обратной свертки. Работа посвящена вопросу восстановления смазанных изображений методом слепой обратной свертки. В статье даны основные определения по восстановлению искаженных изображений, а именно – размытие, смазливость. Приведены модель процесса искажения, искажающих функций, модель шума, теорема о свертке, инверсная фильтрация. Рассмотрены существующие подходы для деконволюции, фильтр Вине-ра, регуляризация по Тихонову, фильтр Люси-Ричардсона, слепая деконволюция.
изображение
восстановление
расфокусированность
метод
слепая обратная свертка
1. Сальников И.И., Мартенс-Атюшев Д.С. МЕТОДЫ ЦИФРОВОЙ ОБРАБОТКИ ИЗОБ-РАЖЕНИЙ // Международный студенческий научный вестник. 2015. № 3-2. С. 276-277;
2. Ямбаев Харьес Каюмович, Староверов Сергей Вячеславович. Особенности фоточув-ствительных приемников с зарядовой связью и их возможности в геодезии и метроло-гии // Интерэкспо Гео-Сибирь. 2017. [Электронный ресурс]. URL: https://cyberleninka.ru/article/n/osobennosti-fotochuvstvitelnyh-priemnikov-s-zaryadovoy-svyazyu-i-ih-vozmozhnosti-v-geodezii-i-metrologii
3. Малкина В.М., Строкань О.В. Методика классификации объектов цифрового изобра-жения крови на основании их геометрических характеристик // Университетская наука серия «Информационные технологии». 2016. № 2 С. 152-155.
4. Винеровское оценивание // Википедия — свободная энциклопедия. 2021 [Электрон-ный ресурс]. URL: ru.wikipedia.org/wiki/Винеровское_оценивание
5. Коробейников А.Г., Федосовский М.Е., Алексанин С.А. Разработка автоматизирован-ной процедуры для решения задачи восстановления смазанных цифровых изображе-ний // Кибернетика и программирование. 2016. № 1. С. 270 - 291.
6. Снеддон И. Преобразование Фурье // Москва: Изд-во иностр. лит., 1955. 668 с.
7. Qt // Википедия — свободная энциклопедия. 2022 [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Qt

Введение. Почти каждый современный человек, когда-то сталкивавшийся с фотооборудованием, знаком с проблемой смазанного или расфокусированного изображения [1]. Этот дефект очень часто встречается в современном мире фотофиксации. Однако это не большая проблема, когда смазывание возникает во время частной фотосессии – «плохие» кадры удаляются, а момент съемки можно повторить. Проблема становится тогда, когда на смазанном изображении зафиксировано лицо преступника или последствия катастрофы. Решить проблему возможно путем использование цифровой техники, работа которой основывается на современных цифровых способах обработки сигналов. Особое развитие в условиях сегодняшнего дня приобретают методы цифровой обработки изображений, поскольку они составляют значительную часть общего трафика мультисервисных сетей [1]. Решение задач при работе с цифровыми изображениями требует особого труда и знания специфических методов обработки этих изображений. В связи с этим важной задачей перед учеными и инженерами является усовершенствование современных и разработка новых методов цифровой обработки изображений.

Цель исследования. Основным элементом фотоустройств является светочувствительная ПЗС-матрица, которая предназначена для преобразования, спроектированного на него оптического изображения в аналоговый электрический сигнал, или в поток цифровых данных [2,3]. При использовании светочувствительной ПЗС-матрицы возникает ряд проблем и дефектов: шум, неправильная экспозиция, дисторсия, смазка и расфокусировка. Для устранения этих дефектов используются специальные инструменты, имеющиеся у каждого современного фоторедактора. Поэтому целью данной работы является разработка информационной системы повышения качества фотоизображения путем восстановления расфокусированных или смазанных фотоизображений, которые образуются во время работы фотофиксирующей техники.

Материал и методы исследования. Для обработки фотоизображений в настоящее время существует богатый арсенал всяческого компьютерного оборудования и программного обеспечения. Наиболее широкое использование получил метод «слепой деконволюции» (слепая обратная свертка) – это известный метод восстановления оригинального изображения на основе нескольких или одного смазанного кадра [2].

Есть несколько алгоритмов или подходов к работе с деконволюцией и их автоматизированные программные реализации: фильтр Винера [4], фильтрация Тихонова или Тихоновская регуляризация [5], слепая деконволюция [6].

Для реализации деконволюции требуется библиотека преобразования Фурье. И в настоящее время существует несколько библиотек с различными собственными преимуществами и недостатками: библиотека FFTW является набором модулей на языках С и Фортран для вычисления быстрого преобразования Фурье (БПФ); библиотека ALGLIB – это кросс-платформная библиотека численного анализа; библиотека Intel® Math Kernel Library(Intel® MKL); программная библиотека AMD Core Math Library.

Результаты исследования и их обсуждение. Рассматривая обновление расфокусированных или смазанных изображений со стороны элементарной математики, можно представить такой случай. Есть ряд пикселей со значениями: x1, x2, x3, x4 ... – это начальное изображение. После смазки изображения значение каждого пикселя добавляется к значению пикселя например слева, т.е.: x'i = xi + xi-1 .

В результате имеем размытое изображение со значениями пикселей: (x1+x0), (x2+x1), (x3+x2), (x4+x3)… – это смазанное некачественное изображение. Для восстановления смаза вычтем последовательно по цепочке значение по схеме – из второго пикселя первый, из третьего результат второго, из четвертого результат третьего и так далее, получим: (x1 + x0), (x2 - x0), (x3 + x0), (x4 - x0)…В результате получаем восстановленное изображение.

Но есть еще одна проблема изображения – цифровой шум [3]. Цифровой шум – это дефект изображения, вносимый фотосенсором и электроникой используемых их устройств (цифровой фотоаппарат, теле-видеокамеры и т. п.). Как показывает анализ методов [4-6], учитывающих наличие шума, показал, что наиболее легким в программной реализации и самым быстрым в работе является фильтр Винера.

Для решения поставленной задачи воспользуемся языком программирования высокого уровня С++. Для разработки информационной системы выбираем кросс-платформенный инструментарий разработки Qt [8]. Он имеет бесплатную, не коммерческую лицензию, распространяемую с помощью GNU GPL и профильную направленность языка программирования С++. С легкостью позволяет подключать внешние библиотеки и реализовать масштабируемость разрабатываемой информационной системы.

Разрабатываемая информационная система направлена на восстановление расфокусированных и смазанных изображений, полученных через фотофиксирующую технику предприятия.

Система работает с изображениями, а для добавления файлов в рабочую среду системы есть классы ввода и вывода. Эти классы будут отвечать за открытие файлов, за работу с буфером обмена, за сохранение восстановленных изображений на различных носителях.

Визуализацию структуры информационной системы можно увидеть на рисунке 1.

Рисунок 1 – Структура информационной системы.

Главный листинг алгоритма деконволюции через фильтр Винера изображен на рисунке 2.

Рисунок 2 – Листинг реализации фильтра Винера.

Для осуществления диалогами между системой и пользователем разработан интерфейс пользователя. Главное окно интерфейса пользователя включает область меню и область восстановления со всеми деталями настроек в виде элементов формы (рис. 3). Интерфейс поддерживает Windows Aero.

Рисунок 3 – Форма интерфейса главного окна информационной системы.

Интерфейс пользователя делится на две области: меню и восстановление. В области меню пользователь имеет возможность контролировать и изменять все настройки процесса восстановления, а в области восстановления на загруженное некачественное изображение будут в режиме реального времени применяться выбранные выше в меню настройки восстановления.

На рисунке 4,а представлен пример расфокусированного изображения, а на рисунке 4,б – результат работы разработанной системы.

 
 

а)


Рисунок 4 – Пример восстановление расфокусированного изображения

Разработанная информационная система работы позволяет визуализировать всю работу информационной системы на базе фильтра Винера, а разработанный интерфейс пользователя – представить всю систему как единый механизм.

Выводы. Результатом выполнения работы является спроектированная логика, структурная схема, интерфейс пользователя и программная реализация информационной системы автоматизированного восстановления расфокусированных изображений. На основе обзора методов восстановления разработан алгоритм на базе фильтрации Винера как основной для работы информационной системы.


Библиографическая ссылка

Коротыш Д.В., Строкань О.В. ИНФОРМАЦИОННАЯ СИСТЕМА АВТОМАТИЗИРОВАННОГО ВОССТАНОВЛЕНИЯ РАСФОКУСИРОВАННЫХ ИЗОБРАЖЕНИЙ НА БАЗЕ ФИЛЬТРА ВИНЕРА // Международный студенческий научный вестник. – 2023. – № 2. ;
URL: https://eduherald.ru/ru/article/view?id=21237 (дата обращения: 21.11.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674