Актуальность
Марганец является важным микроэлементом, который может обладать как отрицательными (обладает свойствами цитотоксичности и генотоксичности), так и положительными эффектами. Из-за способности изменять степень окисления с Mn+2 на Mn+3, марганец может выступать кофактором определенных антиоксидантных ферментов: супероксиддисмутазы (MnСОД), пируваткарбоксилазы, различных трансфераз, гидролаз и киназ. Данные ферменты играют важную роль в метаболизме макронутриентов, а также в работе эндокринной, пищеварительной и репродуктивной систем организма [6]. Оксид и сульфат марганца – основные неорганические формы, присутствующие в пище. Другие формы Mn, включающие карбонат, цитрат, глюконат, гидроксипролинат марганца, используются как биологически активные добавки. Химическая форма (Mn органический и неорганический), степень окисления (Mn+2 и Mn+3) – факторы, влияющие на биодоступность марганца. Исследования на коровах установили, что биодоступность органического марганца выше неорганического (в сыворотке крови максимальная концентрация марганца, после приема органической формы была выше в 1,4 раза, чем после аналогичного приема неорганической соли марганца) [9]. При больших концентрациях в крови, марганец обладает токсическими свойствами: обнаруживается дисфункция митохондриального дыхания, генерация активных форм кислорода (АФК), нарушения дофаминэргической, глутаматэргической и ГАМК-эргической систем организма. Получены данные о стимулирующем действии глюконата Mn(II) на показатели гуморального и клеточного звеньев иммунной системы белых мышей [2]. В то же время получены результаты на мышах, свидетельствующие об антиканцерогенном действии этого соединения [1].
Цель исследования: оценить процесс всасывания ионов марганца и влияния его соединения с глюконовой кислотой на проантиоксидантную систему, как возможный механизм противоопухолевого действия.
Материалы и методы
Исследовательская работа проводилась на кафедре биологической химии БГМУ. Эксперимент проводился на 50-ти 2,5-месячных лабораторных мышах массой 25-30 г, которым однократно внутрибрюшинно вводился циклофосфан (50 мг/кг). Влияние синтезированного глюконата Mn (ИОХ УНЦ РАН) изучалось в сравнении с двумя группами: введение иммуностимулирующего препарата «Ликопид» (0,17 мг/кг) и глюконата Ca+2 (50 мг/кг). Контролем, относительно которого оценивали результаты, служила группа иммунодефицитных мышей «без лечения», им вводилась дистиллированная вода. Эта группа сравнивалась с группой «контроль-интактные». Пероральное введение всех препаратов начиналось через 24 часа после инъекции циклофосфана и далее ежедневно в течение 14 дней. Глюконат марганца вводился в дозе 1/10 LD50/. На 15-е сутки животные умерщвлялись методом цервикальной дислокации, и в гомогенате печени определялась активность ключевых антиоксидантных ферментов: супероксиддисмутазы, каталазы, глутатионпероксидазы (ГПО) и глутатионтрансферазы (ГТ). Интенсивность перекисного окисления липидов (ПОЛ) оценивалась по содержанию малонового диальдегида (МДА). Статистическая обработка результатов проводилась с применением программы «Microsoft Excel». Статистически значимыми принимали значения при р <0,05.
Результаты и обсуждение
Всасывание марганца начинается в проксимальном отделе тонкой кишки, здесь он абсорбируется энтероцитами в форме Mn+3 путем связывания с белком трансферрином [8]. Всасывание марганца возможно только в ионной форме, различия в абсорбционной способности глюконата и гидроксипролината марганца обусловлены разницей скорости высвобождения иона Mn+2 из комплекса под действием ферментов желудочно-кишечного тракта [12]. Происходит эндоцитоз образовавшегося комплекса Mn+3-трансферрин, после чего трансферриновый рецептор (TfR) способствует образованию эндосомы и проникновению комплекса внутрь клетки. Внутри эндосомы Mn+3 под действием фермента ферроредуктазы переходит в Mn+2. Ионы Mn+3 являются реакционноспособными, провоцируют образование АФК, вызывают оксидативный стресс, поэтому трехвалентный марганец практически не обнаруживается в цитоплазме клеток [11]. Транспортер бивалентных металлов-1 (DMT-1) является основным переносчиком марганца (80%), он входит в состав образовавшейся эндосомы и выводит ионы Mn+2 в цитозоль [7]. В цитоплазме энтероцитов ионы марганца практически не используются, а их высокая концентрация вызывает экспрессию генов, кодирующих синтез экспортеров марганца: АТФазы-13А2, SLC30A10, ферропортина и секреторной Ca2+-АТФазы-1. В клетках двенадцатиперстной кишки наибольшую активность проявляет ферропортин. При высоких концентрациях марганца повышается активность АТФазы-13А2: улавливается избыток Mn+2, который связывается в комплекс Mn+2-DMT-1 и выводится из клетки по типу экзоцитоза (защитный механизм) [7, 10, 13].
В крови марганец транспортируется в виде свободных ионов или в комплексе с β1-глобуллином и активно захватывается в печени, также возможна транспортировка с трансферрином в другие органы и ткани [5]. Проникновение ионов марганца в гепатоцит осуществляется различными белками-транспортерами: транспортер DMT-1, транспортеры цинка (ZIP8, ZIP14), дикарбоксилатный транспортер, трансферриновые рецепторы (TfR); а также через кальциевые каналы [4]. Марганец у человека входит в состав фермента митохондриальной СОД, необходимого для защиты митохондрии от действия супероксид аниона. Марганец способен катализировать работу ферментов пируваткарбоксилазы, фосфоенолпируваткарбоксикиназы и аргиназы [11]. Марганец обладает стимулирующим действием на синтез антител (IgG) [1].
При исследовании гомогената печени мышей в трех экспериментальных группах показано, что при иммунодефиците происходит резкое повышение ПОЛ – в 5,4 раза и снижение активности антиоксидантных ферментов: СОД – в 5,3, каталазы – в 1,6, ГПО – в 11,2, ГТ – в 1,7 раз. После введения глюконата марганца эта картина улучшалась: происходило снижение уровня МДА в 1,5 раз и повышение ключевого антиоксидантного фермента ГПО – в 4,4 раза.
Заключение
Таким образом, марганец в зависимости от формы (органические комплексы, неорганические соли) и способа введения, может оказывать как положительное, так и цитотоксическое, генотоксическое действие. При повышении его концентрации в клетке происходит экспрессия генов, кодирующих синтез экспортеров марганца: АТФазы-13А2, SLC30A10, ферропортина и секреторной Ca2+-АТФазы-1.
Результаты экспериментального исследования свидетельствуют о подавлении глюконатом марганца процессов перекисного окисления липидов и стимулирующем действии на глутатионпероксидазу – ключевой антиоксидантный фермент, что может явиться пусковым механизмом торможения процесса опухолевого роста клеток.
Библиографическая ссылка
Овсюк Д.Н., Уразаева С.И., Чумак В.А., Князева О.А. АНТИОКСИДАНТНЫЕ СВОЙСТВА ГЛЮКОНАТА МАРГАНЦА КАК ВОЗМОЖНЫЙ МЕХАНИЗМ ЕГО ПРОТИВООПУХОЛЕВОГО ДЕЙСТВИЯ // Международный студенческий научный вестник. – 2018. – № 4-3. ;URL: https://eduherald.ru/ru/article/view?id=18881 (дата обращения: 22.12.2024).