Как неоднократно отмечалось, для статистического вывода о наличии или отсутствии корреляционной связи между исследуемыми переменными необходимо произвести проверку значимости выборочного коэффициента корреляции. В связи с тем что надежность статистических характеристик, в том числе и коэффициента корреляции, зависит от объема выборки, может сложиться такая ситуация, когда величина коэффициента корреляции будет целиком обусловлена случайными колебаниями в выборке, на основании которой он вычислен. При существенной связи между переменными коэффициент корреляции должен значимо отличаться от нуля. Если корреляционная связь между исследуемыми переменными отсутствует, то коэффициент корреляции генеральной совокупности ρ равен нулю [9].
Как всякая статистическая характеристика, выборочный коэффициент корреляции является случайной величиной, т.е. его значения случайно рассеиваются вокруг одноименного параметра генеральной совокупности (истинного значения коэффициента корреляции) [1].
При отсутствии корреляционной связи между переменными у и х коэффициент корре ляции в генеральной совокупности равен нулю. Но из-за случайного характера рассеяния принципиально возможны ситуации, когда некоторые коэффициенты корреляции, вычисленные по выборкам из этой совокупности, будут отличны от нуля [5].
Процедура проверки значимости начинается с формулировки нулевой гипотезы H0. В общем виде она заключается в том, что между параметром выборки и параметром гене ральной совокупности нет каких-либо существенных различий. Альтернативная гипотеза H1 состоит в том, что между этими параметрами имеются существенные различия. Например, при проверке наличия корреляции в генеральной совокупности нулевая гипотеза заключается в том, что истинный коэффициент корреляции равен нулю . Если в результате проверки окажется, что нулевая гипотеза не приемлема, то выборочный коэффициент корреляции значимо отличается от нуля (нулевая гипотеза отвергается и принимается альтернативная Н1) [7, 10].
При проверке значимости исследователь устанавливает уровень значимости α, который дает определенную практическую уверенность в том, что ошибочные заключения будут сделаны только в очень редких случаях. Уровень значимости выражает вероятность того, что нулевая гипотеза Н0 отвергается в то время, когда она в действительности верна. Ясно, что имеет смысл выбирать эту вероятность как можно меньшей [2].
Пусть известно распределение выборочной характеристики, являющейся несмещенной оценкой параметра генеральной совокупности. Выбранному уровню значимости α соответствуют под кривой этого распределения заштрихованные площади (см. рис. 1). Незаштрихованная площадь под кривой распределения определяет вероятность
.
Границы отрезков на оси абсцисс под заштрихованными площадями называют критическими значениями, а сами отрезки образуют критическую область, или область отклонения гипотезы [3].
Когда же надо убедиться в том, что одна величина в среднем строго больше или мень ше другой, используется односторонняя критическая область. Если распределение выборочной характеристики симметрично, то уровень значимости двусторонней критической области равен α, а односторонней (см. рис. 1). Далее мы лишь укажем критерии значимости для различных процедур, не останавливаясь на их построении [6].
Рис. 1 Проверка нулевой гипотезы H0
Проверяя значимость коэффициента парной корреляции, устанавливают наличие или отсутствие корреляционной связи между исследуемыми явлениями. При отсутствии связи коэффициент корреляции генеральной совокупности равен нулю (p=0). Процедура проверки начинается с формулировки нулевой и альтернативной гипотез [8]:
Н0: различие между выборочным коэффициентом корреляции r и ρ = 0 незначимо,
Н1: различие между r и p=0 значимо, и следовательно, между переменными у и х имеется существенная связь. Из альтернативной гипотезы следует, что нужно воспользоваться двусторонней критической областью.
Выборочный коэффициент корреляции при определенных предпосылках связан со случайной величиной t, подчиняющейся распределению Стьюдента с степенями свободы [4].
Вычисленная по результатам выборки статистика
(1)
сравнивается с критическим значением, определяемым по таблице распределения Стьюдента при заданном уровне значимости α и степенях свободы. Правило применения критерия заключается в следующем: если , то нулевая гипотеза на уровне значимости α отвергается, т. е. связь между переменными значима; если
,
то нулевая гипотеза на уровне значимости α принимается. Отклонение значения r от можно приписать случайной вариации. Данные выборки характеризуют рассматриваемую гипотезу как весьма возможную и правдоподобную, т. е. гипотеза об отсутствии связи не вызывает возражений.
Рассмотрим на конкретном примере проверку гипотезы о значимости выборочного коэффициента корреляции.
Для 15 пар порядковых переменных (x, y) был вычислен коэффициент корреляции Спирмена, который оказался равным . При уровне значимости проверить гипотезу H0 о равенстве генерального коэффициента ранговой корреляции нулю при конкурирующей гипотезе .
Решение:
Постановка задачи:
Найдем наблюдаемое значение критерия:
Найдем значения границ двусторонней критической области из условия, что при малых объемах выборок критерий t распределен (при справедливости нулевой гипотезы) по закону распределения Стьюдента с числом степеней свободы
На основе таблицы «Критические точки распределения Стьюдента» найдем границы двусторонней критической области на основе
и
Полученные результаты покажем графически (рис. 2).
Поскольку наблюдаемое значение критерия попало в критическую область, то следует отклонить нулевую гипотезу в пользу альтернативной гипотезы. Это означает, что коэффициент ранговой корреляции значим: между двумя порядковыми случайными величинами X и Y в генеральной совокупности имеется значимая связь, которая говорит о наличии связи этих двух случайных величин.
Рис. 2
Библиографическая ссылка
Савельева А.С.,Черненко Н.А. ПРОВЕРКА ЗНАЧИМОСТИ ДЛЯ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ // Международный студенческий научный вестник. – 2018. – № 3-1. ;URL: https://eduherald.ru/ru/article/view?id=18221 (дата обращения: 21.11.2024).