Электронный научный журнал
Международный студенческий научный вестник
ISSN 2409-529X

ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ В ЭКОНОМИКЕ

Захарова В.С. 1 Неснова Е.В. 1
1 ФГБОУ ВО Ставропольский государственный аграрный университет
Данная статья посвящена изучению применения математической статистики в экономике и рассмотрению операций купли-продажи. Зачастую в экономике приходится иметь дело не только с известными событиями, но и с явлениями, которые не имеют точных значений, а лишь подлежат оценочному описанию. Исходя из этого в статье рассматриваются такие понятия как: вероятность и случайные величины, позволяющие предугадать изменения в экономике и предпринимательстве. Любое экономическое исследование всегда предполагает объединение теории (экономической модели) и практики (статистических данных). Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала (например, оценить необходимый объём выборки для получения результатов требуемой точности при выборочном обследовании). Основным элементом экономического исследования является взаимосвязь экономических переменных, что показано в данной работе.
экономика
математическая статистика
вероятность
случайные величины
дисперсия
1. Бондаренко Д.В., Бражнев С.М., Литвин Д.Б., Варнавский А.А. Метод повышения точности измерения векторных величин // Наука Парк. – 2013. – № 6 (16). – С. 66–69.
2. Гулай Т.А., Жукова В.А., Мелешко С.В., Невидомская И.А. Математика: рабочая тетрадь. – Ставрополь, 2015.
3. Долгополова А.Ф., Гулай Т.А., Литвин Д.Б. Финансовая математика в инвестиционном проектировании (учебное пособие). // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 8–2. – С. 178–179.
4. Долгополова А.Ф., Гулай Т.А., Литвин Д.Б. Совершенствование экономических механизмов для решения проблем экологической безопасности. // Информационные системы и технологии как фактор развития экономики региона. II Международная научно-практическая конференция, 2013. – С. 68–71.
5. Литвин Д.Б., Гулай Т.А., Жукова В.А., Мамаев И.И. Модель экономического роста с распределенным запаздыванием в инвестиционной сфере // Вестник АПК Ставрополья. – 2017. – № 2 (26). – С. 225–228.
6. Литвин Д.Б., Шепеть И.П. Моделирование роста производства с учетом инвестиций и выбытием фондов // Cоциально-экономические и информационные проблемы устойчивого развития региона: Международная научно-практическая конференция, 2015. – С. 114–116.
7. Литвин Д.Б., Шепеть И.П., Бондарев В.Г., Литвина Е.Д. Применение дифференциального исчисления функций нескольких переменных к разработке алгоритма определения координат объекта // Финансово-экономические и учетно-аналитические проблемы развития региона: Материалы Ежегодной 78-й научно-практической конференции, 2014. – С. 242–246.
8. Роговая Н.А., Шайтор А.К., Литвин Д.Б. Качество образования и один из путей его повышения // Инновационные направления развития в образовании, экономике, технике и технологиях. Международная научно-практическая конференция: сборник статей. В 2 ч. / под общ. ред. В.Е. Жидкова, 2014. – С. 169–173.
9. Litvin D.B., Popova S.V., Zhukova V.A., Putrenok E.L., Narozhnaya G.A. Monitoring of the parameters of intra-industrial differentiation of the primary industry of the traditionally industrial region of southern Russia // Journal of Advanced Research in Law and Economics. – 2015. – Т. 6; № 3. – С. 606–615.

При описании разнообразных систем регулярно возникает необходимость рассматривать совокупность величин разной природы, взаимосвязанных между собой. Так, например, при рассмотрении операций купли-продажи элементами системы будут являться:

• продукция, характеризуемая количеством единиц товара, а также разновидностью (тип товара) и его качественными показателями;

• деньги, характеризуемые единственным показателем – суммой;

• информация – совокупность сообщений о значениях всех величин, образующих систему, и об их изменениях.

В экономической деятельности, и в особенности в предпринимательстве, приходится иметь дело не только с уже известными событиями (как, например, количество проданной вчера продукции), но и с будущими явлениями, не характеризуемых точными значениями и поддающимися лишь оценочному описанию. При математическом моделировании таких событий используется понятие вероятности. Характеристики, принимающие различные значения в каждом отдельном случае (например, количество продукции, которая будет продана в определённый день), называют случайными величинами (СВ) [5, 8].

Для описания СВ важно знание о том, каково множество её значений. Так, при подбрасывании монетки исход эксперимента может принимать одно из двух значений, а при бросании простого игрального кубика – одно из шести. Для неслучайной, детерминированной СВ множество значений состоит из одного элемента. Все такие СВ, множество значений которых конечно, называются дискретными. Если же, например, исследователя интересуют координаты места падения брошенной монетки, то возможных значений оказывается бесконечно много, и тогда СВ называется непрерывной. От этого свойства – дискретности либо непрерывности – зависит применяемый метод описания. [4]

При многократной реализации дискретной СВ можно определить частоту, с которой она принимает каждое из возможных значений. Из теории вероятностей известно утверждение, что при увеличении количества испытаний каждая из частот сходится к некоторому пределу, всегда находящемуся в промежутке от 0 до 1. Этот предел и называется вероятностью. Таким образом, вероятность реализации СВ в виде фиксированного значения – это частота появления искомого значения при бесконечном числе опытов. Обычно вероятность обозначается латинской буквой P: P(X) – вероятность наступления события X. Если в случае дискретной СВ вероятность события равна 1, то событие происходит при каждом опыте и называется достоверным; если вероятность равна 0, то событие называется невозможным и никогда не происходит [1, 9].

Из сказанного видно, что при любом множестве значений дискретной СВ сумма вероятностей появления этих значений равна 1. Так, при бросании симметричного шестигранного игрального кубика вероятность выпадения каждого из значений от 1 до 6 равна zah1.wmf; если же кубик не симметричен, то эти шесть значений могут быть другими, но их сумма по-прежнему равна 1 [7].

xi

1

2

3

4

5

6

pi

zah2.wmf

zah3.wmf

zah4.wmf

zah5.wmf

zah6.wmf

zah7.wmf

Каждую дискретную СВ можно описать в виде таблицы, в которой выписаны все возможные её значения вместе с их частотами. Такую таблицу можно называть выборочным распределением. Можно вместо таблицы использовать графическое изображение – гистограмму [3].

Распределение наблюдаемой случайной величины, отражённое в такой таблице или гистограмме, содержит все сведения о ней, которые возможно добыть в результате экспериментов. С другой стороны, в практической деятельности бывает необходима дополнительная информация, как, например, сколько мы в среднем будем выигрывать при бросании кубика, получая при каждом броске выигрыш, равный выпавшему значению? В приведённом примере среднее значение, полученное при непосредственных наблюдениях, вычисляется как:

zah8.wmf. (1)

M(X) = 1 · 0,140 + 2 · 0,080 + 3 * 0,200 + 4 · 0,400 + 5· 0,100 + 6 * 0,080 = 3,48.

В общем случае применяется понятие математического ожидания, определяемое как сумма всех значений СВ, умноженных на соответствующие вероятности. Если zah9.wmf — вероятность появления значения Xi случайной величины X, то математическое ожидание

zah10.wmf.

В случае симметричного кубика оно примет вид

1 * zah11.wmf + 2 * zah12.wmf + 3 * zah13.wmf+ 4 * zah14.wmf+ 5* zah15.wmf +

+6 * zah16.wmf = 3,5.

Можно отметить, что математическое ожидание является пределом средних значений при стремлении числа опытов к бесконечности.

Помимо вычисления среднего значения важно бывает также определить, насколько сильно оказывается нарушена симметрия, то есть насколько велик разброс значений относительно математического ожидания. Это приводит к необходимости введения понятия дисперсии, которая в общем случае выражается по формуле:

zah17.wmf; (2)

zah18.wmf. (3)

Справедлива также формула (3), по которой дисперсия выражается через разность среднего квадрата и квадрат её среднего значения. В рассмотренном случае можно убедиться, что D(X)=14,04 – 3,482 * 1,93.

Из формул видно, что дисперсия имеет размерность второй степени. Чтобы избежать этого, часто рассматривают среднеквадратичное отклонение σ(X), равное квадратному корню из дисперсии.

zah20.wmf (4)

В разобранном примере среднеквадратичное отклонение будет равно 1,389.

В случае, когда распределение СВ состоит из единственного значения, дисперсия равна 0. И наоборот, при броске правильного кубика среднее значение квадрата отклонения равно

zah21.wmf,

а дисперсия вычисляется как 15,167 – 12,25 = 2,917. Отсюда видно, что наибольшее рассеивание значений отмечается при равномерном распределении, то есть когда вероятности значений СВ равны между собой.

Поскольку математическое ожидание M(X) и среднеквадратичное отклонение S(X) имеют ненулевую размерность, имеет смысл рассматривать их отношение, являющееся безразмерным, или коэффициент вариации:

zah22.wmf. (5)

В рассмотренном выше случае получим

zah23.wmf.

Эта величина представляет собой одну из допустимых оценок «случайности» данной случайной величины.

Таким образом, ключевыми характеристиками случайной величины являются её математическое ожидание – предел средних значений – и дисперсия, являющаяся мерой разброса её значений относительно середины. Если величина детерминирована, то есть определена, то её математическое ожидание равно её значению, а коэффициент вариации и дисперсия равны нулю. У равномерно распределённых случайных величин последние два показателя достигают наибольшего значения [2].

Одна из важнейших особенностей введённых математических характеристик заключается в удобной возможности их обобщения на случай непрерывной СВ. Их распределение задаётся кривой на координатной плоскости, каждая точка которой соответствует вероятностной мере (плотность вероятности). При построении математической модели вместо простого суммирования, как для дискретных СВ, в случае непрерывности происходит вычисление интеграла. Как правило, при рассмотрении непрерывных случайных величин не требуется рассчитывать вероятность определённого, точного значения; чаще всего задача сводится к нахождению вероятности попадания значения СВ в фиксированный промежуток. Чтобы найти вероятность принятия СВ значения, не превосходящего аргумента (функция распределения), достаточно проинтегрировать на указанном промежутке кривую вероятности [6].


Библиографическая ссылка

Захарова В.С., Неснова Е.В. ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ В ЭКОНОМИКЕ // Международный студенческий научный вестник. – 2018. – № 3-1.;
URL: http://eduherald.ru/ru/article/view?id=18209 (дата обращения: 14.06.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074