Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

ИСCЛЕДОВАНИЕ АЛГОРИТМОВ ОБНАРУЖЕНИЯ И РАСПОЗНАВАНИЯ ДОРОЖНЫХ ЗНАКОВ

Аккуратов В.В. 1 Пчелинцева Н.И. 1 Черепков Е.А. 1
1 Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
К настоящему моменту было разработано очень много алгоритмов позволяющих обнаруживать и распознавать различные объекты на изображении, например таких как бинаризация по порогу, выбор области гистограммы, вейвлеты, корреляция, распознавание по особым точкам. В данной статье рассматривается модель распознавания образов с использованием сравнения моментов контуров. Помимо этого в статье рассматриваются некоторые из возможных алгоритмов предварительной обработки изображения предназначенных для получения более качественных границ объектов, например такие как выделение цвета, применение к изображению матричных фильтров с целью сглаживания изображения, поиск примитивных фигур на изображении с помощью выделения границ, для данной цели в работе был использован детектор Кенни, в основе которого лежит градиентный оператор Собеля, детектор Кенни реализован во множестве программных продуктов, в частности OpenCV, что позволяет легко использовать его в своих проектах. Помимо этого продемонстрирован поэтапный пример работы данной модели, начиная с алгоритмов предварительной обработки и заканчивая выделением контуров и процессом их распознания. Также предложены способы её усовершенствования с помощью признаков Хаара и метода Виолы Джонса.
дорожные знаки
hsv
бинаризация
выделение границ
метод виолы-джонса
сравнение моментов
оператор собеля
детектор кенни.
1. Гришанов К.М., Белов Ю.С. Методы выделения признаков для распознавания символов. Электронный журнал: наука, техника и образование, 2016, вып. 1(5), стр. 110-119.
2. Нестеров А.Ю., Белов Ю.С. Распознавание образов по уникальным точкам на примере дорожных знаков. Электронный журнал: наука, техника и образование. 2016. № 4 (9). С. 113-119.
3. Нестеров А.Ю., Белов Ю.С. Cравнительный анализ функционирования алгоритма распознавания по контрольным точкам и результатов работы мобильного приложения roadar. Электронный журнал: наука, техника и образование. 2017. № СВ1 (11). С. 139-145
4. Сакович И.О., Белов Ю.С. Обзор основных методов контурного анализа для выделения контуров движущихся объектов. Инженерный журнал: наука и инновации. 2014. № 12 (36). С. 11.
5. Коваль Ю.А., Филиппов М.В. Метод предварительной фильтрации изображений для повышения точности распознавания образов. Инженерный журнал: наука и инновации, 2014, вып. 12. URL: http://engjournal.ru/catalog/it/hidden/1307.html (дата обращения: 22.12.2017).
6. Borgefors G Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):849-865, 2000.
7. Chan T.F., Vese L.A. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277. февраль 2001.
8. Lin Weisi,Dacheng Tao Multimedia Analysis, Processing and Communications, 2011, pp. 200-205.
9. M.K.Hu. Visual Pattern Recognition by Moment Invariants. IRE Trans. Info. Theory. vol. IT-8:179-187, 2000.
10. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features. Accepted Conference On Computer Vision And Pattern Recognition, 2001, vol. 1, pp. 511-518.

Введение

Большинство систем для поиска и идентификации объектов на изображении требуют огромных вычислительных мощностей, а в случае мобильных устройств постоянная работа камеры и высокая нагрузка на процессор создает проблему больших затрат энергии. Потребление больших вычислительных мощностей обусловлено необходимостью предварительной обработки получаемых на вход изображений. Для решения проблемы обнаружения и идентификации объектов создано множество алгоритмов, позволяющих проектировать более производительное программное обеспечение[3].

Исходя из описанного выше можно в общем виде построить алгоритм для обнаружения и идентификации объектов:

1. Предварительная обработка изображения;

2. Поиск объекта (для нашей задачи это будет окружность, прямоугольник или треугольник);

3. Распознавание объекта.

Предварительная обработка изображения. Одним из главных препятствий в решении задачи распознавания является качество снимков, отсюда возникает необходимость предварительной обработки изображений[2,5]. Так как для дорожных знаков при изготовлении используется строго определенный набор цветов, для предварительной обработки изображений можно использовать выделение цветов геометрических примитивов [1].

Для задачи поиска цвета наиболее удобным решением является перевод изображения в цветовую модель HSV, которая предполагает более четкое разграничение цветов. Для перевода к данной цветовой модели из цветового пространства RGB необходимо воспользоваться (1):

(1)

где H[0,360]; S,V,R,G,B[0,1], а МАХ – максимальное из значений R,G,B, MIN – минимальное.

Для данной цветовой модели важной компонентой в рамках поставленной задачи будет цветовой тон Н, остальные компоненты следует выбирать максимальными так как они зависят от окружения [7].

После определения границ цвета требуется анализировать изображение попиксельно, а затем проводить бинаризацию. Под бинаризацией подразумевается, что цвет каждого пикселя имеющего значение цветового тона в пределах искомого цвета делаем белым, остальные пиксели делаем черными (Рис.1).

https://habrastorage.org/storage2/f35/ffa/156/f35ffa156b5a62d2389a89c9bdfee810.png

а) б)

Рис.1 Этапы предварительной обработки изображения:

а) Изображение полученное с видеорегистратора

б) Выделение красного цвета и бинаризация

Следующим этапом в предварительной обработке является сглаживание. В качестве фильтра выбран матричный фильтр размерности 3х3 (2):

(2)

В процессе применения фильтра компоненты изображения перемножаются на коэффициенты матрицы, а затем складываются. Затем полученные компоненты делятся на размерность матрицы фильтра, после чего получаем компоненты RGB, которые присваиваются пикселям после применения к ним матричного фильтра.

Результат применения фильтра (2) к рис. 1 можно увидеть на рис. 2.

Рис.2 Применение фильтра сглаживания.

Поиск объекта

Для поиска объекта требуется выделить границы искомого объекта. Для этой цели хорошо подходит детектор Кенни [4]. Реализация данного детектора присутствует в библиотеке OpenCV. В основе его работы лежит градиентный оператор Собеля. Различные программные реализации позволяют указать пороги минимума, максимума и размерность оператора Соболя при вызове метода. Маски, используемые оператором Собеля [8], представлены на рис.3.

image

Рис.3 Маски оператора Собеля

Эффект применения оператора Собеля к рис. 2 можно увидеть на рис. 4.

Рис.4 Выделение границ с помощью оператора Собеля

Распознавание объекта. Далее требуется распознать полученный контур. Для этого можно использовать сравнение моментов. Чтобы использовать данный подход необходимо иметь образец фигуры, в результате обработки которой будет найден нужный контур. Сравнение моментов контуров реализуется с помощью составления карты контуров и последующего сопоставления знака с помощью преобразования Фурье. Для данного метода возможно три варианта сравнения, использующие инвариантные моменты, являющиеся линейной комбинацией нормализованных центральных моментов[9]. Выражение вида (3) является двумерным моментом порядка (p+q) [6].

(3)

где D-область изображения, для которой вычисляются моменты. Для описания изображения совместная вероятность p(x, y) заменяется на функцию яркости изображения f(x,y). Переход к центральным моментам обеспечивает инвариантность двумерных моментов к сдвигу [6]. После преобразований получим выражение (4)

(4)

где ­– координаты центра области D.

Переход к нормализованным центральным моментам обеспечивает инвариантность относительно масштабирования.

В качестве меры сходства изображений возможен выбор между тремя функциями (5)

, , , (5)

где , , а - моменты Hu изображений A и B соответственно.

Выводы. В данной статье была рассмотрена многоэтапная модель распознавания объектов, в основе которой метод сравнения моментов. Данная модель обеспечивает хорошую производительность для задачи нахождения однотипных объектов. В случае, если изображение подается затемненным или с бликами, тогда требуется его дальнейшее улучшение [9]. Так же для более гибкого распознавания можно использовать методы машинного обучения. Одним из таких методов является каскадный классификатор на основе признаков Хаара, который в свою очередь использует метод Виолы-Джонса [10].


Библиографическая ссылка

Аккуратов В.В., Пчелинцева Н.И., Черепков Е.А. ИСCЛЕДОВАНИЕ АЛГОРИТМОВ ОБНАРУЖЕНИЯ И РАСПОЗНАВАНИЯ ДОРОЖНЫХ ЗНАКОВ // Международный студенческий научный вестник. – 2018. – № 1. ;
URL: https://eduherald.ru/ru/article/view?id=18031 (дата обращения: 09.12.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674