Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

ИСПОЛЬЗОВАНИЕ МЕТОДОВ ОПТИМАЛЬНЫХ РЕШЕНИЙ В ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЙ

Ануприенко М.А. 1
1 Ставропольский государственный аграрный университет
1. Тарасов В.Л. Экономико-математические методы и модели: учебное пособие. – Н.Новгород: ННГУ, 2003. – 64 с.
2. Канторович Л.В. Экономический расчёт наилучшего использования ресурсов. – М.: Наука, 2011. – 760 с.
3. Грешилов А.А. Прикладные задачи математического программирования: – М.: Логос, 2006. – 288 с.
4. Yanovskii A.A., Simonovskii A.Ya., Klimenko E.M. On the Influence of the Magnetic Field upon Hydrogasdynamic Processes in a Boiling Magnetic Fluid // Surface Engineering and Applied Electrochemistry. – 2014. – Vol. 50, №. 3. – Р. 260-266.
5. Яновский А.А., Симоновский А.Я., Клименко Е.М. К вопросу о влиянии магнитного поля на гидрогазодинамические процессы в кипящей магнитной жидкости // Электронная обработка материалов. – 2014. – № 3. – С. 66-72.
6. Яновский А.А., Спасибов А.С. Математическое моделирование процессов в кипящих намагничивающихся средах // Современные наукоемкие технологии. – 2014. – № 5-2. – С. 183-186.
7. Яновский А.А., Симоновский А.Я., Савченко П.И. Моделирование гидрогазодинамических процессов в кипящей магнитной жидкости: сборник «Информационные системы и технологии как фактор развития экономики региона». – Ставрополь, 2013. – С. 159-163.
8. Яновский А.А., Симоновский А.Я. Математическое моделирование формы пузырька пара в кипящей магнитной жидкости: сборник научных трудов «Финансово-экономические проблемы развития региона и учетно-аналитические аспекты функционирования предпринимательских структур» по материалам Ежегодной 77-й научно-практической конференции ФГБОУ ВПО “Ставропольский государственный аграрный университет”, “Аграрная наука – Северо-Кавказскому федеральному округу”. – 2013. – С. 490-493.
9. Игропуло В.С., Яновский А.А. Математическое моделирование некоторых ориентационных процессов на наноповерхностях // Обозрение прикладной и промышленной математики. – 2008. – Т. 15, № 3. – C. 484-485.
10. Литвин Д.Б., Яновский А.А., Донец З.Г. Интерполяция и аппроксимация данных в matlab: сборник «Информационные системы и технологии как фактор развития экономики региона». – 2013. – С. 97-99.
11. Яновский А.А. Симоновский А.Я., Холопов В.Л. Влияние магнитного поля на процессы парообразования в кипящей магнитной жидкости // Фундаментальные исследования. – 2013. – №8(2). – С. 332-337.
12. Яновский А.А. Тепло- и массоперенос при кипении магнитной жидкости на неограниченной поверхности с точечным подводом тепла // Вестник Нижегородского университета им. Н.И. Лобачевского. – 2011. – №4(3). – С. 1289-1290.
13. Симоновский А.Я., Яновский А.А. Влияние однородного магнитного поля на теплообмен при кипении магнитной жидкости на неограниченной поверхности // Наука. Инновации. Технологии. – 2011. – №6-1. – С. 272-278.
14.  Гулай Т.А. Рабочая тетрадь «математическая логика и теория алгоритмов»: учебное пособие / Гулай Т.А., Мелешко С.В., Невидомская И.А., Яновский А.А. // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 8-2. – С. 169.
15. Симоновский А.Я., Родина Е.В., Цыплакова О.Н., Донец З.Г. Теплообмен в магнитной жидкости, кипящей на горизонтальной поверхности в однородном магнитном поле: сборник «Аграрная наука, творчество, рост». – 2014. – С. 361-364.

Математические методы являются важнейшим инструментом анализа экономических явлений и процессов. Они позволяют создавать теоретические модели, а так же отображать существующие в экономической жизни связи, прогнозировать поведение экономических субъектов и экономическую динамику. Математическое моделирование становится языком современной экономической теории, одинаково понятным для учёных всех стран мира.

Рассмотрим типичные задачи с использованием математических методов [1-3]. Предприятие выпускает четыре вида изделий с использованием четырех видов сырья. Нормы расхода сырья даны как элементы матрицы А: 1 2 3 4. Вид сырья

missing image file

Требуется найти затраты сырья каждого вида при заданном плане выпуска каждого вида изделия: соответственно, 60, 50, 35 и 40 ед. Составим вектор-план выпуска продукции: =(60, 50, 35, 40).

missing image file

Тогда решение задачи дается вектором затрат, координаты которого и являются величинами затрат сырья по каждому его виду: этот вектор затрат вычисляется как произведение вектора на матрицу А:

missing image file

missing image file

Рассмотрим типичные задачи, возникающие в ходе хозяйственной деятельности предприятий. Спрогнозируем величину выпуска продукции, исходя из сведений известных о запасах сырья. Фирма выпускает 3 вида продукции. При этом используется 3 типа сырья. Таблица отражает основные параметры технологии производства. Определим объемы продукции, которые возможно выпустить при заложенных данных о запасах сырья. Такого рода вопросы неизбежно возникают при деятельности любого предприятия.

Вид

сырья

Расход сырья по видам

продукции, вес.ед./изд.

Запас

сырья,

вес.ед.

1

2

3

1

2

3

6

4

5

4

3

2

5

1

3

2400

1450

1550

Полученные в ходе решения ответы на поставленные вопросы дадут возможность для прогнозных оценок и заключений, а также для создания планов по микроэкономическим показателям предприятий.

Обозначим неизвестные объемы выпускаемой предприятием продукции через неизвестные величины x1, x2 и x3. Тогда при условии полного расхода запасов для каждого вида сырья можно записать уравнения, отражающие баланс продукции и сырья из которого она сделана. Получаем систему 3 уравнений с 3 неизвестными:

missing image file

Решение систему уравнений приводит к следующим результатам (с учетом заданных значений о сырье):

missing image file

Рассмотрим наиболее общую постановку задачи прогнозирования объемов продукции. Пусть

missing image file

- матрица, отражающая расход сырья Т видов при выпуске продукции. Тогда при известных объемах запаса каждого вида сырья, которые образуют соответствующий векторmissing image file

Вектор missing image file = (х1, х2, ... , xn) характеризует объем выпуска продукции и определяется из решения системы Т уравнений с n неизвестными

missing image file

Здесь индекс Т означает транспонирование вектора-строки в вектор-столбец.

Рассмотрим задачи использование линейной модели торговли. Процесс взаимных закупок товаров анализируется с использованием понятий собственного числа и собственного вектора матрицы. Будем полагать, что бюджеты n стран, которые мы обозначим, соответственно, х1, х2, …, хn, расходуются на покупку товаров. Рассмотрим линейную модель обмена продукцией.

Пусть аij – доля бюджета хj, которую j-я страна тратит на закупку товаров у i-й страны. Введем матрицу коэффициентов аij:

missing image file

Тогда, если весь объем средств расходуется только на закупку сырья извне (это можно рассматривать как торговый бюджет). Тогда справедливо равенство

missing image file

Матрица А с данным свойством, в силу которого сумма элементов ее любого столбца равна единице, называется структурной матрицей торговли. Для i-й страны общая выручка от внутренней и внешней торговли выражается формулой

missing image file

Условие сбалансированной торговли формулируется естественным образом: для каждой страны ее бюджет должен быть не больше выручки от торговли, т.е. missing image file, или

missing image file missing image file

Докажем, что в условиях не может быть знака неравенства. Действительно, сложим все эти неравенства при i от 1 до n. Группируя слагаемые с величинами бюджетов xn, получаем

missing image file

missing image file

Как можно заметить, в скобках стоят суммы элементов матрицы А по ее столбцам, которые равны единице по условию. Таким образом, мы получим неравенство

missing image file

откуда следует, что возможен только знак равенства.

Условия принимают вид равенств:

missing image file

Введем вектор бюджетов missing image file, каждая компонента которого характеризует бюджет соответствующей страны. Тогда систему уравнений можно записать в матричной форме: Ax=x

Это уравнение означает, что собственный вектор структурной матрицы А, отвечающий ее собственному значению 1, состоит из бюджетов стран бездефицитной международной торговли. Перепишем уравнение в виде, позволяющем определить: x: (A-E)x=0

Таким образом, применение методов оптимального решения в деятельности предприятий приводит к экономии материальных средств, экономии времени и улучшению производительности. Кроме того, данные методы могут быть полезны и в задачах экспериментального исследования различного рода процессов [4-15].


Библиографическая ссылка

Ануприенко М.А. ИСПОЛЬЗОВАНИЕ МЕТОДОВ ОПТИМАЛЬНЫХ РЕШЕНИЙ В ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЙ // Международный студенческий научный вестник. – 2015. – № 3-4. ;
URL: https://eduherald.ru/ru/article/view?id=14115 (дата обращения: 07.12.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074