Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

SOCIO-ECONOMIC DEVELOPMENT OF THE REGION: INDICATORS, MODEL, PROBLEM

Bazhin A.N. 1 Gusarova O.M. 1
1 Financial University under the Government of the Russian Federation
Carried out a study of the level of development of the regional economy of the city of Moscow, identified a number of factors determining the socio-economic situation in the region. Gross regional product analyzed in Dynamics for 2000-2014 Gg. Carried out a statistical study of the growth and the growth of the gross regional product. As the mathematical tools to identify statistical dependencies regional indicators used methods of economic-statistic and correlation and regression analysis. Carried out a study of the dynamics of a number of regional indicators, such as investments in fixed assets per capita, population, the cost of fixed assets, the average wage. Solved calculation and analysis of the base and the chain's regional growth indicators. The estimation of the statistical relationship of gross regional product of the city of Moscow and a number of regional indicators. To this end was carried out construction and analysis of matrix coefficients of steamy correlation. Modelling trends in regional indicators, using trend analysis. Established quantitative relationship between gross regional product and a number of socio-economic indicators of the city using characteristics of coefficients of steamy regression. Built a series of regression equations describing the relationship between the regional indicators, including linear and non-linear dependence of the gross regional product from a number of regional factors. Implemented advanced forecasting periods of gross regional product of the city of Moscow. Recommendations on the use of research results in enhancing the effectiveness of the region's economy.
gross regional product
statistical interrelation of regional indicators
matrix of pair correlations
regression equation
regression models
forecast.

Исследованию актуальных проблем социально-экономического развития регионов посвящен ряд научных работ [1,2,4,5,10,11,14,20]. Моделирование статистической взаимосвязи ряда региональных показателей и последующая их экономико-статистическая оценка может быть выполнена с использованием методов корреляционно-регрессионного анализа [3,6,7,9]. Ввиду большого объема исходной статистической информации эконометрическое исследование целесообразно осуществлять с использованием современных информационных технологий [13,16,19]. В качестве объекта эконометрического исследования был выбран город Москва – крупнейший финансовый, экономический и культурно-просветительный центр России.

Интегрированным показателем, характеризующим уровень развития региона, является валовой региональный продукт (ВРП). Для осуществления эконометрического моделирования были использованы данные за 2000-2014гг. (табл.1) [21].

Таблица 1 – Показатели социально-экономического развития г.Москва.

Величина валового регионального продукта исследуемого региона имеет устойчивую положительную тенденцию, о чем свидетельствуют его базисные и цепные абсолютные приросты (рис.1). В интервале анализа за период с 2000 по 2014 года средний темп роста ВРП составил 1,16 %, средний годовой темп прироста составил 16%. В течение анализируемого периода средний темп роста объема инвестиций в основном капитал составил 1,15 %, средний ежегодный темп прироста – 15%. Средний темп роста экономически занятого населения региона составил 1,01%, средний темп прироста -1%. Среднее значение стоимости основных фондов с 2000 по 2014 годы составило 11670950,13 млн. рублей, средний темп роста составил 1,22% , средний темп прироста - 22% . В среднем за весь период стоимость основных фондов увеличилась на 1807026,73 млн. рублей.

Рисунок 1 – Динамика валового регионального продукта г.Москва

Для осуществления эконометрического моделирования необходимо построить матрицу парных корреляций, характеризующую статистическую взаимосвязь ряда региональных показателей (табл.2) [15]. Анализ матрицы парных корреляций позволил выявить тесную корреляционную зависимость между следующими региональными показателями: валовой региональный продукт (Y), инвестиции в основной капитал (X1), численность населения (X2), стоимость основных фондов (X3) [18]. Между рассматриваемыми показателями имеет место прямая зависимость, т.е. рост валового регионального продукта обусловлен ростом объема инвестиций в экономику региона, ростом численности населения и увеличением стоимости основных фондов.

Таблица 2 – Матрица коэффициентов парных корреляций региональных показателей

С точки зрения эконометрического анализа ведущим фактором, оказывающим наибольшее влияние на результативный признак Y (валовой региональный продукт), является Х2 (численность населения), т.к. коэффициент парной корреляции между этими признаками имеет наибольшее значение. Построим модель парной регрессии ВРП от численности населения региона (рис.2).

Рисунок 2 – Итоги регрессионного однофакторного анализа

Построенное уравнение парной регрессии Y= 0,46305 * x2 - 4592429,093 имеет высокое качество, о чем свидетельствует величина коэффициента детерминации =0,9780, следовательно, размер ВРП на 97,8 % зависит от величины численности населения [8]. Значение F-критерия Фишера равно 579,09, что свидетельствует о статистической значимости построенного уравнения парной регрессии [12]. Ведущий фактор численность населения является статистически значимым, что подтверждается значением t-статистики Стьюдента, равным 24,06.

С точки зрения экономического анализа и с учетом результатов построения матрицы парных корреляций большое значение на величину ВРП региона оказывает объем инвестиций в основной капитал (Х1). Для сравнительного анализа осуществим построение парной регрессии валового регионального продукта (Y) от объема инвестиций (Х1) (рис.3).

Рисунок 3 – Итоги регрессионного однофакторного анализа

Построенное уравнение регрессии также обладает высоким качеством, о чем свидетельствует коэффициент детерминации 0,944, по критерию Фишера, равному 221,22 , уравнение регрессии признается статистически значимым, факторный признак Х1(инвестиции) по t-статистике Стьюдента=14,87 является значимым [17]. Оба уравнения регрессии могут быть использованы для анализа и прогнозирования величины валового регионального продукта региона.

Для прогнозирования величины валового регионального продукта необходимо предварительно определить прогноз факторного признака. Для фактора Х1 (инвестиции) с целью получения прогноза был построен ряд трендовых моделей, в т.ч. линейных и нелинейных (табл.3).

Таблица 3 – Трендовые модели объема инвестиций в основной капитал региона

Вид тренда

Уравнение тренда

Прогноз

1 шаг

2 шаг

Линейный тренд

y = 7671,9x - 406,53

R² = 0,9122

117329,0

126874,0

Нелинейный тренд (полиномиальная модель)

y = 214,46x2 + 4240,4x + 9315,9

R² = 0,9227

 

По результатам исследования лучшим качеством обладает полиномиальная модель, однако ввиду небольшой разницы в значениях коэффициента детерминации для построения прогнозов может быть выбрана любая модель. Подставляя полученные прогнозные значения объема инвестиций в основной капитал в уравнение парной регрессии валового регионального продукта от объема инвестиций Y= 16214,27675+8,747510728 X1, получим, что прогнозное значение валового регионального продукта в перспективном периоде составит 1042843,05 и 1126361,8 млн.рублей.

Следует отметить, что построенные регрессионные модели носят вероятностный характер и на социально-экономическое положение региона оказывают влияние большое количество факторов, таких как состояние мирового и отечественного рынка, конъюнктурные изменения на рынке капитала, достаточность финансовых ресурсов, меры государственной денежно-кредитной политики.