Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

THE APPLICATION OF TECHNIQUES OF FINANCIAL MATHEMATICS IN ECONOMIC CALCULATIONS

Balaba D.A 1 Korotkova V.P. 1
1 Stavropol State Agrarian University
2462 KB
The use of mathematical apparatus in the field of economy, especially in the financial area, does not lose its relevance for many years. This is because the application of mathematical methods to calculate interest rates in Finance and credit has quite wide application. In modern society for solving problems of this type using categories of the theory of probability, which allow to predict the total result. Also of particular importance in the economic applications are mathematical methods based on the use of Taylor series, the equations of Fisher and the equation of equivalence. In General, their use allows not only to determine the actual yield from the investment of funds in the form of Bank deposits and value of the contracts, but also to calculate the amount of the accrued.
Financial mathematics
probability estimation
mathematical methods
interest rate
value of the contract
the yield of investments

В последние годы в России произошло много изменений в применении разделов прикладной математики в различных сферах. Интересы специалистов по прикладной математике переместились на новые области. Оперативное развитие банковской, инвестиционной и страховой деятельности обусловило необходимость привлечения в данные области специалистов нового типа. Так, одной из таких областей оказалась финансовая математика.

Финансовая математика представляет собой раздел прикладной математики, который изучает задачи, имеющие финансовые расчеты. В данной области каждый финансовый инструмент рассматривается со стороны генерируемого этим инструментом потока денежных средств [1].

Тема не теряет свою актуальность и в современном обществе, так как методы математического расчета процентных ставок в сфере финансов и кредита имеют широкое применение, особенно при финансовом проектировании, при сравнении и отборе долгосрочных инвестиционных проектов, при расчетах, связанных с личным страхованием. То есть, такие специалисты как финансисты, бухгалтера, экономисты, банкиры, должны обладать знанием методов математических операций с процентной ставкой [5].

Сейчас для решения многих задач в сфере финансов и кредита используют такие специфические математические методы, которые основываются на основных постулатах теории вероятностей, значительный вклад в которую внесли такие русские ученые, как: П.Л. Чебышев, А.А. Марков, А.М. Ляпунов [2].

Теория вероятностей позволяет предсказать суммарный результат, то есть если специалисты по финансам и кредиту изучат законы, управляющие этими случайными событиями, то при возникновении необходимости смогут изменить их ход [4].

Так, на данный момент, коммерческие банки имеют в своем расположении большое количество операций денежно-кредитного характера, но все же главное направление их деятельности – это выдача кредитов. Поэтому у банков возникает такая опасность, как кредитный риск, зависящий в главной мере от вероятности выполнения заемщиком всех обязательств, предписанных договором. То есть вероятность определяется тем, как заемщик погасит кредитные обязательства.

Человек, взявший кредит (т.е. заемщик), возвращает кредит долями и платит процент, установленный банком. Но условия договора могут не выполняться, если наступят обстоятельства, которые в последствие определят наложение и взыскания с помощью судебного иска. Поэтому для банка рациональнее и разумнее выдавать кредиты лишь тогда, когда он будет уверен в своем заемщике.

В этом случае возникает случайная величина – вернули кредит или нет. Для определения надежности кредитуемого, банк проводит анализ общей характеристики, личных доходов, собственного капитала и экономической ситуации в целом. Данный анализ проводится на основе методов теории вероятностей и математической статистики.

Так же теория вероятностей используется и при нахождении простых (то есть расчет дохода на процент, основанный на арифметической прогрессии) и сложных (то есть начисление в банковском депозите, который по истечении каждого периода предполагает то, что начисленные проценты становятся суммой) процентов, например, при помощи такого приема, как ряды Тейлора.

Ряд Тейлора представляет собой разложение функции в бесконечную сумму степенных функций. Он применяется при аппроксимации функции многочленами, а линеаризация уравнений основывается на разложении в ряд Тейлора и отсечения членов выше первого порядка.

Пусть функция f(x) бесконечно дифференцируемая функция в некоторой окрестности точки. Формальный ряд bal01.wmf, называется рядом Тейлора функции f(x) в точке a.

Для расчета реальной доходности используют уравнение Фишера, описывающее связь между темпом инфляции, номинальной и реальной ставками процента.

bal02.wmf

где ixx – номинальная ставка процента, iyy – реальная ставка процента, infl – темп инфляции – для значений, которые меньше 10 %, либо более точная формула:

bal03.wmf

Для примера рассмотрим следующую ситуацию.

Применив ряд Тейлора, привести значения сложных процентов вклада, полученных в результате депозитной операции. Используя формулу Фишера, скорректировать процентную ставку (iyy) простых и сложных процентов на уровне инфляции, при условии, что срок вклада (n) = 5, процентная ставка (i) = 13 %, темп инфляции (infl) в единицу срока вклада равна 8,9 %.

Найдем значения ряда Тейлора:

bal04.wmf

bal05.wmf

bal06.wmf

Теперь вычислим простые и сложные проценты:

bal07.wmf

bal08.wmf

Используя уравнение Фишера, найдем реальную процентную ставку:

Для простых:

bal09.wmf

Для сложных:

bal10.wmf

Также с помощью математических формул можно определить реальную доходность от вложения денежных средств в виде депозитов в банке. Она может быть как положительной, что говорит о приумножении вложений в реальном выражении, так и отрицательной, что свидетельствует об их обесценении.

Рассмотрим на примере следующей ситуации.

Первоначальная сумма (P) 6400 руб. помещена в банк на срок (n) 0,75 года (9 месяцев) под 7 % годовых (i) (простые проценты). Найти наращенную сумму (S), эквивалентные значения простой учетной ставки (d), сложной процентной ставки (i), сложной номинальной процентной ставки (j) (проценты начисляются 4раза в году). Найти наращенную сумму, при условии, что ставка налога на проценты (q) составляет 9 %, а уровень инфляции (a) за рассматриваемый период оказался равным 1,9 %. Какова реальная доходность операции (C)?

Формула для нахождения наращенной суммы имеет следующий вид:

bal11.wmf

Найдем наращенную сумму:

bal12.wmf руб.

Эквивалентное значение простой учетной ставки находится по формуле:

bal13.wmf

bal14.wmf

По формуле:

bal15.wmf

найдем эквивалентное значение сложной процентной ставки:

bal16.wmf

Также по формуле:

bal17.wmf

найдем значение сложной номинальной процентной ставки:

bal18.wmf

Для того чтобы найти наращенную сумму при наличии ставки налога на проценты изначально необходимо рассчитать сумму налога на проценты (Sn). Для этого используем следующую формулу:

bal19.wmf

Вычислим сумму налога на проценты:

bal20.wmf руб.

Теперь мы можем найти наращенную сумму при наличии ставки налога на проценты (Sл), используя следующую формулу:

bal21.wmf

Она будет равна:

bal22.wmf руб.

Для того чтобы определить какова реальная доходность операции, нам необходимо рассчитать индекс цен (I):

bal23.wmf

bal24.wmf

В итоге найдем реальную стоимость наращенной суммы с учетом инфляции (C), используя формулу:

bal25.wmf

bal26.wmf руб.

В практике финансовых операций имеет распространение сделка, называемая продажей контракта. Она заключается в следующем. Некий субъект (или организация) имеет контракт, по которому он получит с другого субъекта определённую сумму денег в определенный срок. Владелец этого контракта хочет получить деньги и для осуществления этого желания продает контракт банку (или другому лицу), который сможет в будущем получить деньги по этому контракту. Контракт имеет стоимость, определяемую в момент его покупки, т.е. современную ценность, приняв за момент приведения начало контракта.

Для определения стоимости контракта используется уравнение эквивалентности, которое определяет большинство соотношений и формул финансовой математики как свои частные случаи. В данном уравнении сумма заменяемых платежей, приведенных к какому-либо одному моменту времени, приравнивается к сумме платежей, сделанных по новому обязательству, приведенных к той же дате [3].

В качестве примера приведем следующую ситуацию.

Гражданин А купил у гражданина В некую вещь, заключив контракт, в соответствии с которым он обязуется заплатить 1000 руб. через 27 месяцев и еще 3000 руб. – через 5 лет. Гражданин В, нуждаясь в деньгах, хочет продать данный контракт финансовой организации, которая согласна его купить лишь при условии начисления на собственные деньги процентов по ставке bal27.wmf. Сколько компания обязана заплатить господину В за контракт?

Условия контракта определяются осью времени, на которой каждый процентный период равен 3 месяцем, а на 27 месяцах имеется 9 процентных периодов, а в 5 годах – 20 процентных периодов.

Организация обязана заплатить за контракт его стоимость в момент 0 (то есть в момент начала приведения), данная стоимость обозначается буквой х. Отсюда, очевидно, что:

bal28.wmf,

bal29.wmf;

bal30.wmf руб.

В общем виде уравнение эквивалентности можно записать следующим образом:

bal31.wmf;

bal32.wmf,

где bal33.wmf – платежи по старому контракту; bal34.wmf – сроки, в которые должны быть произведены эти платежи; bal35.wmf – платежи по новому контракту; bal36.wmf, если соответствующие платежи производятся ранее момента, к которому приводятся платежи; bal37.wmf, если соответствующие платежи производятся после момента, к которому приводятся платежи; i – ставка процентов, начисляемых на деньги, находящиеся в обороте.

То есть, организация должна за контракт 2855,8 рублей.

Таким образом, с помощью математических методов в сфере финансов и кредита определяются процентные ставки, стоимость контрактов, реальная доходность вложений и т.д. Данные методы очень важны в рассмотренной сфере, так как в настоящее время рыночная экономика достигла очень высокого уровня развития. Однако, в связи с ее постоянным движением вперед, необходимо разрабатывать новые, более прогрессивные методы и приемы, в которых будут нуждаться специалисты новых профилей и вся экономика в целом.