Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

TITANIUM Β-MODIFICATIONS OF NANO- AND MICROSTRUCTURES

Babikhina M.N. 1 Zavazieva D.T. 1 Moreva I.V. 1
1 Tomsk Polytechnic University
In this paper the properties of titanium structures in micro- and nano-states. The difference in the physical properties of micro- and nano- commercially pure titanium states kept in the comparison table 1, which shows that the main influence on the change of the properties have a classical size effects. The work was considered ?-modification of commercially pure titanium with the dimensional parameters for the forward and reverse BCC lattice of the FCC lattice, also shows the formula for calculating the reciprocal lattice parameters. Presented Brillouin zone and the Fermi surface for this modification of the material. List the main ways of obtaining and main field of application of titanium powder. The scope of the metal particles treated areas such as Tribotechnics, medicine and biotechnology.

Введение

На сегодняшний день можно с полной уверенностью говорить, что изучение наноразмерных структур в основном относится к направлению «нанотехнологии». Важными составляющими этого научно-технического направления является разработка и изучение наноструктурных материалов, наноразмерных объектов, способов их совмещения, а также исследование свойств полученных наноструктур в различных условиях.

Под наноматериалами понимают материалы, структурные элементы, размеры которых не превышают нанотехнологических границ - 100 нм [1].

Наиболее общие особенности свойств наноструктур сводятся к тому, что:

·         с уменьшением размера элементов значительно возрастает роль поверхностей раздела (доля приповерхностных атомов увеличивается от долей процента до нескольких десятков процентов);

·         свойства поверхностей раздела в нанометровом диапазоне размеров могут сильно отличаться от таковых для крупнокристаллических материалов (краевые эффекты, влияние сил изображения, различия поверхностей раздела в нанокомпозитах);

·         размер элементов наноструктур соизмерим с характерными размерами некоторых физических явлений (например, с длиной свободного пробега в явлениях переноса);

·         размерные эффекты в наноструктурах могут иметь квантовый характер (когда размер области локализации свободных носителей становится соизмерим с длиной волны де Бройля λв) [1].

1     Проведение сравнительного анализа в микро- и наноструктурах титанового сплава (β-модификации)

Титан и сплавы на его основе характеризуются наличием двух модификаций (α и β). В данной статье будет рассмотрена только одна β-фаза титана. Данная модификация определяется объемно-центрированной решеткой, с параметром а=3,28 Å [2]. Данной решетке в прямом пространстве соответствует ГЦК решетка в обратном пространстве, с параметром а=1,91 Å. На рисунке 1 представлены решетки β-титана в прямом пространстве ОЦК решетка (а) и в обратном пространстве ГЦК решетка (б).

бета титан — копия.jpg

дельта титан.jpg

(а)

(б)

Рисунок 1 – β-титан в прямом пространстве ОЦК решетка (а) и в обратном пространстве ГЦК решетка (б)

Параметр обратной решетки рассчитывается по формуле 1.

                                                                     (1)

Атомы в решетке соединяются посредствам металлической связи.

На рисунке 2 представлена поверхность Ферми для титана модификации b-титан.


Рисунок 2 – Поверхность Ферми для b-титана

Рисунок 3 – Первые зоны Бриллюэна для ОЦК-решетки b-титана [3]

Как вся кристаллографическая или структурная информация содержится в примитивной ячейке прямой кристаллической решетки, так и вся информация о распространяющихся в кристалле волновых колебаниях содержится в примитивной (Вигнера-Зейтца) ячейке обратной решетки, т.е. в первой зоне Бриллюэна.

Каждая волна может быть определена через соответствующий волновой вектор, κ=2π/λ, поэтому обратную решетку также называют пространством волновых векторов или k-пространством [3].

Сравнительные характеристики технически чистого титана в микро- и наноструктурах приведены в таблице 1.

Таблица 1. Сравнение свойств технически чистого титана в макро- и наноструктурах.

Свойства

Наноструктурированное состояние (~200 нм)

Крупнозернистое состояние (~25 мкм)

Температура плавления, °С

69

1668

Предел текучести, МПа

1100

240

Предел прочности, МПа

1160

400

Микротвердость, МПа

3000 – 3200

1800

Плотность, г/см3

2,85

4,32

Представленные данные о физических свойствах титана в наноструктурированном и крупнозернистом состоянии позволяют говорить о том, что основное влияние на изменение свойств оказывают классические размерные эффекты. Так как характерные размеры структур не сопоставимы с длиной волны де Бройля в металлах (~ 0,1-1 Å), квантовые размерные эффекты, как влияющие на изменение свойств титана, не рассматриваются [4].

2.      Способы получения нанопорошка титана

Нанопорошки с "особыми" свойствами получают, в основном, методом испарения-конденсации в условиях быстрого охлаждения. Испарение материала осуществляют различными способами: в плазменной струе, пропусканием тока, лазерным или электронным лучом и др. Однако, сверхбыстрое охлаждение является обязательным условием.

Также имеется разработанный и запатентованный способ получения нанопорошков методом электрического взрыва проволок. На основе этого способа отработан технологический процесс получения нанопорошков с управляемыми свойствами [5].

К механическим методам получения нанопорошков относится:

- измельчение материала в мельницах. Исходя из данного метода следует учитывать, что при дроблении до крупных частиц расход энергии пропорционален объему разрушаемого тела, а при получении наночастиц работа измельчения пропорциональна главным образом площади образующейся поверхности. Механическим путем измельчают металлы, керамику, полимеры, оксиды, хрупкие материалы. Степень измельчения зависит от вида материала. Так, для оксидов вольфрама и молибдена получают крупность частиц порядка 5 нм, для железа – порядка 10÷20 нм. Разновидностью механического измельчения является механосинтез, или механическое легирование, когда в процессе измельчения происходит взаимодействие измельчаемых материалов с получением измельченного материала нового состава.

- диспергирование расплавов потоком жидкости или газа. Это высокопроизводительный процесс, который легко осуществить по непрерывной схеме и автоматизировать, он экономичен и экологичен. Этим методом получают порошки металлов и сплавов Fe, Al, Cu, Pb, Zn, Ti, W и др.

К одним из физико-химических методов получения нанопорошков относится:

- вакуумное осаждение. Процесс включает в себя три последовательные стадии: испарение вещества, его транспорт к подложке и конденсацию [6].

3.      Применение нанопорошка титана

Основными областями применения нанопорошков титана являются:

·         Триботехника:

Наноструктурные многослойные пленки сложного состава на основе кубического BN, C3N4, TiC, TiN, Ti(Al,N), обладающие очень высокой или ультравысокой (до 70 ГПа) твердостью хорошо зарекомендовали себя при трении скольжения, в том числе ряд пленок – в условиях ударного износа. Сообщается о разработке сверхтвердых нитридных пленок с наноструктурой; отмечаются хорошие триботехнические свойства пленок с аморфной и наноструктурой из углерода и нитрида углерода, а также из TiC, TiN и TiCN.

В качестве самосмазывающихся покрытий для космической техники предлагаются многофазные наноструктурные покрытия на основе TiB2-MoS2 c твердостью 20Гпа и коэффициентом трения скольжения по стали 0,05. Металлические нанопорошки добавляют к моторным маслам для восстановления трущихся поверхностей.

·         Медицина и биотехнологии:

Важной областью применения чистых наноструктурных материалов, в частности титана, является использование их в медицинских целях – как имплантантов, протезов и в травматологических аппаратах. Причиной является сочетание высоких механических свойств (на уровне сложнолегированных сплавов) с высокой биологической совместимостью чистого металла.

Отдельно можно выделить новое веяние в области цифровых технологий – аддитивное производство (3D печать). Так, кроме технологий «печати» изделий из полимерных материалов, популярность набирают методы послойного синтеза металлических порошков – лазерного и электронно-лучевого сплавления [7]. Наибольший интерес в этом направлении представляют технологии, позволяющие создавать медицинские импланты, детали разного рода технических машин на основе титановых порошков. Это позволяет получать сложные геометрические формы в ходе проведения одного непрерывного технологического процесса.

Выводы

Из литературных источников было выявлено, что влияние классических размерных эффектов сказывается в основном на механических свойствах – показателях прочности и пластичности. Такие свойства, как, например, высокий предел прочности, проявляющиеся в наноструктурах, не наблюдаются в микросостояниях, что позволяет применять титановые нанопорошки при создании деталей технологических машин, эксплуатируемых в тяжелых условиях